ﻻ يوجد ملخص باللغة العربية
Under the lack of variational structure and nondegeneracy, we investigate three notions of textit{generalized principal eigenvalue} for a general infinity Laplacian operator with gradient and homogeneous term. A Harnack inequality and boundary Harnack inequality are proved to support our analysis. This is a continuation of our first work [3] and a substantial contribution in the development of the theory of textit{generalized principal eigenvalue} beside the works [8, 13, 12, 9, 29]. We use these notions to characterize the validity of maximum principle and study the existence, nonexistence and uniqueness of positive solutions of Fisher-KPP type equations in the whole space. The sliding method is intrinsically improved for infinity Laplacian to solve the problem. The results are related to the Liouville type results, which will be meticulously explained.
We study the generalized eigenvalue problem in $mathbb{R}^N$ for a general convex nonlinear elliptic operator which is locally elliptic and positively $1$-homogeneous. Generalizing article of Berestycki and Rossi in [Comm. Pure Appl. Math. 68 (2015),
We prove, with a purely analytic technique, a one-side Liouville theorem for a class of Ornstein--Uhlenbeck operators ${mathcal L_0}$ in $mathbb{R}^N$, as a consequence of a Liouville theorem at $t=- infty$ for the corresponding Kolmogorov operator
We establish the Trudinger-Moser inequality on weighted Sobolev spaces in the whole space, and for a class of quasilinear elliptic operators in radial form of the type $displaystyle Lu:=-r^{-theta}(r^{alpha}vert u(r)vert^{beta}u(r))$, where $theta, b
In this paper, we prove several Liouville type results for a nonlinear equation involving infinity Laplacian with gradient of the form $$Delta^gamma_infty u + q(x)cdot abla{u} | abla{u}|^{2-gamma} + f(x, u),=,0quad text{in}; mathbb{R}^d,$$ where $ga
We consider second-order linear parabolic operators in non-divergence form that are intrinsically defined on Riemannian manifolds. In the elliptic case, Cabre proved a global Krylov-Safonov Harnack inequality under the assumption that the sectional c