ﻻ يوجد ملخص باللغة العربية
We study the generalized eigenvalue problem in $mathbb{R}^N$ for a general convex nonlinear elliptic operator which is locally elliptic and positively $1$-homogeneous. Generalizing article of Berestycki and Rossi in [Comm. Pure Appl. Math. 68 (2015), no. 6, 1014-1065] we consider three different notions of generalized eigenvalues and compare them. We also discuss the maximum principles and uniqueness of principal eigenfunctions.
We study the generalized eigenvalue problem on the whole space for a class of integro-differential elliptic operators. The nonlocal operator is over a finite measure, but this has no particular structure and it can even be singular. The first part of
We consider a class of nonlinear integro-differential operators and prove existence of two principal (half) eigenvalues in bounded smooth domains with exterior Dirichlet condition. We then establish simplicity of the principal eigenfunctions in visco
The existence of positive weak solutions to a singular quasilinear elliptic system in the whole space is established via suitable a priori estimates and Schauders fixed point theorem.
We study the Fredholm properties of a general class of elliptic differential operators on $R^n$. These results are expressed in terms of a class of weighted function spaces, which can be locally modeled on a wide variety of standard function spaces,
Under the lack of variational structure and nondegeneracy, we investigate three notions of textit{generalized principal eigenvalue} for a general infinity Laplacian operator with gradient and homogeneous term. A Harnack inequality and boundary Harnac