ﻻ يوجد ملخص باللغة العربية
The observation of coherent elastic neutrino nucleus scattering (CE$ u$NS) by the COHERENT collaboration in 2017 has opened a new window to both test Standard Model predictions at relatively low energies and probe new physics scenarios. Our investigations show, however, that a careful treatment of the statistical methods used to analyze the data is essential to derive correct constraints and bounds on new physics parameters. In this manuscript we perform a detailed analysis of the publicly available COHERENT CsI data making use of all available background data. We point out that Wilks theorem is not fulfilled in general and a calculation of the confidence regions via Monte Carlo simulations following a Feldman-Cousins procedure is necessary. As an example for the necessity of this approach to test new physics scenarios we quantify the allowed ranges for several scenarios with neutrino non-standard interactions. Furthermore, we provide accompanying code to enable an easy implementation of other new physics scenarios as well as data files of our results.
We investigate the semi-leptonic decays of $bar B to D^{(*)} ellbar u$ in terms of the Heavy-Quark-Effective-Theory (HQET) parameterization for the form factors, which is described with the heavy quark expansion up to $mathcal O(1/m_c^2)$ beyond the
We provide a comprehensive and pedagogical introduction to the MadAnalysis 5 framework, with a particular focus on its usage for reinterpretation studies. To this end, we first review the main features of the normal mode of the program and how a dete
For a discrete function $fleft( xright) $ on a discrete set, the finite difference can be either forward and backward. However, we observe that if $ fleft( xright) $ is a sum of two functions $fleft( xright) =f_{1}left( xright) +f_{2}left( xright) $
We revisit the status of the new-physics interpretations of the anomalies in semileptonic $B$ decays in light of the new data reported by Belle on the lepton-universality ratios $R_{D^{(*)}}$ using the semileptonic tag and on the longitudinal polariz
In this paper we describe a novel, model-independent technique of rectangular aggregations for mining the LHC data for hints of new physics. A typical (CMS) search now has hundreds of signal regions, which can obscure potentially interesting anomalie