ترغب بنشر مسار تعليمي؟ اضغط هنا

Digging Deeper for New Physics in the LHC Data

114   0   0.0 ( 0 )
 نشر من قبل Angelo Monteux
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we describe a novel, model-independent technique of rectangular aggregations for mining the LHC data for hints of new physics. A typical (CMS) search now has hundreds of signal regions, which can obscure potentially interesting anomalies. Applying our technique to the two CMS jets+MET SUSY searches, we identify a set of previously overlooked $sim 3sigma$ excesses. Among these, four excesses survive tests of inter- and intra-search compatibility, and two are especially interesting: they are largely overlapping between the jets+MET searches and are characterized by low jet multiplicity, zero $b$-jets, and low MET and $H_T$. We find that resonant color-triplet production decaying to a quark plus an invisible particle provides an excellent fit to these two excesses and all other data -- including the ATLAS jets+MET search, which actually sees a correlated excess. We discuss the additional constraints coming from dijet resonance searches, monojet searches and pair production. Based on these results, we believe the wide-spread view that the LHC data contains no interesting excesses is greatly exaggerated.



قيم البحث

اقرأ أيضاً

We provide a comprehensive and pedagogical introduction to the MadAnalysis 5 framework, with a particular focus on its usage for reinterpretation studies. To this end, we first review the main features of the normal mode of the program and how a dete ctor simulation can be handled. We then detail, step-by-step, how to implement and validate an existing LHC analysis in the MadAnalysis 5 framework and how to use this reimplementation, possibly together with other recast codes available from the MadAnalysis 5 Public Analysis Database, for reinterpreting ATLAS and CMS searches in the context of a new model. Each of these points is illustrated by concrete examples. Moreover, complete reference cards for the normal and expert modes of MadAnalysis 5 are provided in two technical appendices.
SND@LHC is an approved experiment equipped to detect scattering of neutrinos produced in the far-forward direction at the LHC, and aimed to measure their properties. In addition, the detector has a potential to search for new feebly interacting parti cles (FIPs) that may be produced in proton-proton collisions. In this paper, we discuss FIPs signatures at SND@LHC considering two classes of particles: stable FIPs that may be detected via their scattering, and unstable FIPs that decay inside the detector. We estimate the sensitivity of SND@LHC to probe scattering of leptophobic dark matter, and to detect decays of neutrino, scalar, and vector portal particles. Finally, we also compare and qualitatively analyze the potential of SND@LHC and FASER/FASER{ u} experiments for these searches.
We present a set of recommendations for the presentation of LHC results on searches for new physics, which are aimed at providing a more efficient flow of scientific information between the experimental collaborations and the rest of the high energy physics community, and at facilitating the interpretation of the results in a wide class of models. Implementing these recommendations would aid the full exploitation of the physics potential of the LHC.
Particles with a sub-millimeter decay length appear in many models of physics beyond the Standard Model. However, their longevity has been often ignored in their LHC searches and they have been regarded as promptly-decaying particles. In this letter, we show that, by requiring displaced vertices on top of the event selection criteria used in the ordinary search strategies for promptly-decaying particles, we can considerably extend the LHC reach for particles with a decay length of $gtrsim 100~mu{rm m}$. We discuss a way of reconstructing sub-millimeter displaced vertices by exploiting the same technique used for the primary vertex reconstruction on the assumption that the metastable particles are always pair-produced and their decay products contain high-$p_{rm T}$ jets. We show that, by applying a cut based on displaced vertices on top of standard kinematical cuts for the search of new particles, the LHC reach can be significantly extended if the decay length is $gtrsim 100~mu{rm m}$. In addition, we may measure the lifetime of the target particle through the reconstruction of displaced vertices, which plays an important role in understanding the new physics behind the metastable particles.
152 - K. Piotrzkowski 2008
A significant fraction of pp collisions at the LHC will involve (quasi-real) photon interactions occurring at energies well beyond the electroweak energy scale. Hence, the LHC can to some extend be considered as a high-energy photon-photon or photon- proton collider. This offers a unique possibility for novel and complementary research where the available effective luminosity is small, relative to parton-parton interactions, but it is compensated by better known initial conditions and usually simpler final states. This is in a way a method for approaching some of the issues to be addressed by the future lepton collider. Such studies of photon interactions are possible at the LHC, thanks to the striking experimental signatures of events involving photon exchanges, in particular the presence of very forward scattered protons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا