ﻻ يوجد ملخص باللغة العربية
Much of our understanding of critical phenomena is based on the notion of Renormalization Group (RG), but the actual determination of its fixed points is usually based on approximations and truncations, and predictions of physical quantities are often of limited accuracy. The RG fixed points can be however given a fully rigorous and non-perturbative characterization, and this is what is presented here in a model of symplectic fermions with a nonlocal (long-range) kinetic term depending on a parameter $varepsilon$ and a quartic interaction. We identify the Banach space of interactions, which the fixed point belongs to, and we determine it via a convergent approximation scheme. The Banach space is not limited to relevant interactions, but it contains all possible irrelevant terms with short-ranged kernels, decaying like a stretched exponential at large distances. As the model shares a number of features in common with $phi^4$ or Ising models, the result can be used as a benchmark to test the validity of truncations and approximations in RG studies. The analysis is based on results coming from Constructive RG to which we provide a tutorial and self-contained introduction. In addition, we prove that the fixed point is analytic in $varepsilon$, a somewhat surprising fact relying on the fermionic nature of the problem.
In order to understand the dynamical mechanism of the friction phenomena, we heavily rely on the numerical analysis using various methods: molecular dynamics, Langevin equation, lattice Boltzmann method, Monte Carlo, e.t.c.. We propose a new method w
We study the statistical mechanics of random surfaces generated by NxN one-matrix integrals over anti-commuting variables. These Grassmann-valued matrix models are shown to be equivalent to NxN unita
Quantum Renyi relative entropies provide a one-parameter family of distances between density matrices, which generalizes the relative entropy and the fidelity. We study these measures for renormalization group flows in quantum field theory. We derive
We present a comprehensive analysis of quantum fluctuation effects in the superfluid ground state of an attractively interacting Fermi system, employing the attractive Hubbard model as a prototype. The superfluid order parameter, and fluctuations the
We consider line defects in d-dimensional Conformal Field Theories (CFTs). The ambient CFT places nontrivial constraints on Renormalization Group (RG) flows on such line defects. We show that the flow on line defects is consequently irreversible and