ﻻ يوجد ملخص باللغة العربية
We present a comprehensive analysis of quantum fluctuation effects in the superfluid ground state of an attractively interacting Fermi system, employing the attractive Hubbard model as a prototype. The superfluid order parameter, and fluctuations thereof, are implemented by a bosonic Hubbard-Stratonovich field, which splits into two components corresponding to longitudinal and transverse (Goldstone) fluctuations. Physical properties of the system are computed from a set of approximate flow equations obtained by truncating the exact functional renormalization group flow of the coupled fermion-boson action. The equations capture the influence of fluctuations on non-universal quantities such as the fermionic gap, as well as the universal infrared asymptotics present in every fermionic superfluid. We solve the flow equations numerically in two dimensions and compute the asymptotic behavior analytically in two and three dimensions. The fermionic gap Delta is reduced significantly compared to the mean-field gap, and the bosonic order parameter alpha, which is equivalent to Delta in mean-field theory, is suppressed to values below Delta by fluctuations. The fermion-boson vertex is only slightly renormalized. In the infrared regime, transverse order parameter fluctuations associated with the Goldstone mode lead to a strong renormalization of longitudinal fluctuations: the longitudinal mass and the bosonic self-interaction vanish linearly as a function of the scale in two dimensions, and logarithmically in three dimensions, in agreement with the exact behavior of an interacting Bose gas.
We extend the Hertz-Millis theory of quantum phase transitions in itinerant electron systems to phases with broken discrete symmetry. Using a set of coupled flow equations derived within the functional renormalization group framework, we compute the
We compare two fermionic renormalization group methods which have been used to investigate the electronic transport properties of one-dimensional metals with two-particle interaction (Luttinger liquids) and local inhomogeneities. The first one is a p
As new kinds of stabilizer code models, fracton models have been promising in realizing quantum memory or quantum hard drives. However, it has been shown that the fracton topological order of 3D fracton models occurs only at zero temperature. In this
The key idea behind the renormalization group (RG) transformation is that properties of physical systems with very different microscopic makeups can be characterized by a few universal parameters. However, finding the optimal RG transformation remain
The low temperature thermodynamics of correlated 1D fermionic models with spin and charge degrees of freedom is obtained by exact diagonalization (ED) of small systems and followed by density matrix renormalization group (DMRG) calculations that targ