ﻻ يوجد ملخص باللغة العربية
The importance of detecting neutrinos from a Milky Way core-collapse supernova is well known. An under-studied phase is proto-neutron star cooling. For SN 1987A, this seemingly began at about 2 s, and is thus probed by only 6 of the 19 events (and only the $bar{ u}_e$ flavor) in the Kamiokande-II and IMB detectors. With the higher statistics expected for present and near-future detectors, it should be possible to measure detailed neutrino signals out to very late times. We present the first comprehensive study of neutrino detection during the proto-neutron star cooling phase, considering a variety of outcomes, using all flavors, and employing detailed detector physics. For our nominal model, the event yields (at 10 kpc) after 10 s -- the approximate duration of the SN 1987A signal -- far exceed the entire SN 1987A yield, with $simeq$250 $bar{ u}_e$ events (to 50 s) in Super-Kamiokande, $simeq$110 $ u_e$ events (to 40 s) in DUNE, and $simeq$10 $ u_mu, u_tau, bar{ u}_mu, bar{ u}_tau$ events (to 20 s) in JUNO. These data would allow unprecedented probes of the proto-neutron star, including the onset of neutrino transparency and hence its transition to a neutron star. If a black hole forms, even at very late times, this can be clearly identified. But will the detectors fulfill their potential for this perhaps once-ever opportunity for an all-flavor, high-statistics detection of a core collapse? Maybe. Further work is urgently needed, especially for DUNE to thoroughly investigate and improve its MeV capabilities.
Ground-based optical spectra and Hubble Space Telescope images of ten core-collapse supernovae (CCSNe) obtained several years to decades after outburst are analyzed with the aim of understanding the general properties of their late-time emissions. Ne
Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next ga
Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of c
We investigate the post-explosion phase in core-collapse supernovae with 2D hydrodynamical simulations and a simple neutrino treatment. The latter allows us to perform 46 simulations and follow the evolution of the 32 successful explosions during sev
Air-Cherenkov telescopes have mapped the Galactic plane at TeV energies. Here we evaluate the prospects for detecting the neutrino emission from sources in the Galactic plane assuming that the highest energy photons originate from the decay of pions,