ﻻ يوجد ملخص باللغة العربية
We present an updated model for the average cluster pressure profile, adjusted for hydrostatic mass bias by combining results from X-ray observations with cosmological simulations. Our model estimates this bias by fitting a power-law to the relation between the true halo mass and X-ray cluster mass in hydrodynamic simulations (IllustrisTNG, BAHAMAS, and MACSIS). As an example application, we consider the REXCESS X-ray cluster sample and the Universal Pressure Profile (UPP) derived from scaled and stacked pressure profiles. We find adjusted masses, $M_mathrm{500c},$ that are $lesssim$15% higher and scaled pressures $P/P_mathrm{500c}$ that have $lesssim$35% lower normalization than previously inferred. Our Debiased Pressure Profile (DPP) is well-fit by a Generalized Navarro-Frenk-White (GNFW) function, with parameters $[P_0,c_{500},alpha,beta,gamma]=[5.048,1.217,1.192,5.490,0.433]$ and does not require a mass-dependent correction term. When the DPP is used to model the Sunyaev-Zeldovich (SZ) effect, we find that the integrated Compton $Y-M$ relation has only minor deviations from self-similar scaling. The thermal SZ angular power spectrum is lower in amplitude by approximately 30%, assuming nominal cosmological parameters (e.g. $Omega_text{m}=0.3$, $sigma_8 = 0.8$), and is broadly consistent with recent Planck results without requiring additional bias corrections.
We describe Sunyaev-Zeldovich (SZ) effect measurements and analysis of the intracluster medium (ICM) pressure profiles of a set of 45 massive galaxy clusters imaged using Bolocam at the Caltech Submillimeter Observatory. We have used masses determine
We present a parametric analysis of the intracluster medium and gravitating mass distribution of a statistical sample of 20 galaxy clusters using the phenomenological cluster model of Ascasibar and Diego. We describe an effective scheme for the estim
We review the methods adopted to reconstruct the mass profiles in X-ray luminous galaxy clusters. We discuss the limitations and the biases affecting these measurements and how these mass profiles can be used as cosmological proxies.
We present Sunyaev-Zeldovich (SZ) effect observations of a sample of 25 massive relaxed galaxy clusters observed with the Sunyaev-Zeldovich Array (SZA), an 8-element interferometer that is part of the Combined Array for Research in Millimeter-wave As
We present a technique to constrain galaxy cluster pressure profiles by jointly fitting Sunyaev-Zeldovich effect (SZE) data obtained with MUSTANG and Bolocam for the clusters Abell 1835 and MACS0647. Bolocam and MUSTANG probe different angular scales