We review the methods adopted to reconstruct the mass profiles in X-ray luminous galaxy clusters. We discuss the limitations and the biases affecting these measurements and how these mass profiles can be used as cosmological proxies.
We jointly analyze Bolocam Sunyaev-Zeldovich (SZ) effect and Chandra X-ray data for a set of 45 clusters to derive gas density and temperature profiles without using spectroscopic information. The sample spans the mass and redshift range $3 times 10^
{14} M_{odot} le M_{500} le 25 times 10^{14} M_{odot}$ and $0.15le z le 0.89$. We define cool-core (CC) and non-cool core (NCC) subsamples based on the central X-ray luminosity, and 17/45 clusters are classified as CC. In general, the profiles derived from our analysis are found to be in good agreement with previous analyses, and profile constraints beyond $r_{500}$ are obtained for 34/45 clusters. In approximately 30% of the CC clusters our analysis shows a central temperature drop with a statistical significance of $>3sigma$; this modest detection fraction is due mainly to a combination of coarse angular resolution and modest S/N in the SZ data. Most clusters are consistent with an isothermal profile at the largest radii near $r_{500}$, although 9/45 show a significant temperature decrease with increasing radius. The sample mean density profile is in good agreement with previous studies, and shows a minimum intrinsic scatter of approximately 10% near $0.5 times r_{500}$. The sample mean temperature profile is consistent with isothermal, and has an intrinsic scatter of approximately 50% independent of radius. This scatter is significantly higher compared to earlier X-ray-only studies, which find intrinsic scatters near 10%, likely due to a combination of unaccounted for non-idealities in the SZ noise, projection effects, and sample selection.
We present the reconstruction of hydrostatic mass profiles in 13 X-ray luminous galaxy clusters that have been mapped in their X-ray and SZ signal out to $R_{200}$ for the XMM-Newton Cluster Outskirts Project (X-COP). Using profiles of the gas temper
ature, density and pressure that have been spatially resolved out to (median value) 0.9 $R_{500}$, 1.8 $R_{500}$, and 2.3 $R_{500}$, respectively, we are able to recover the hydrostatic gravitating mass profile with several methods and using different mass models. The hydrostatic masses are recovered with a relative (statistical) median error of 3% at $R_{500}$ and 6% at $R_{200}$. By using several different methods to solve the equation of the hydrostatic equilibrium, we evaluate some of the systematic uncertainties to be of the order of 5% at both $R_{500}$ and $R_{200}$. A Navarro-Frenk-White profile provides the best-fit in nine cases out of 13, with the remaining four cases that do not show a statistically significant tension with it. The distribution of the mass concentration follows the correlations with the total mass predicted from numerical simulations with a scatter of 0.18 dex, with an intrinsic scatter on the hydrostatic masses of 0.15 dex. We compare them with the estimates of the total gravitational mass obtained through X-ray scaling relations applied to $Y_X$, gas fraction and $Y_{SZ}$, and from weak lensing and galaxy dynamics techniques, and measure a substantial agreement with the results from scaling laws, from WL at both $R_{500}$ and $R_{200}$ (with differences below 15%), from cluster velocity dispersions, but a significant tension with the caustic masses that tend to underestimate the hydrostatic masses by 40% at $R_{200}$. We also compare these measurements with predictions from alternative models to the Cold Dark Matter, like the Emergent Gravity and MOND scenarios.
(Abriged) Assuming that the hydrostatic equilibrium holds between the intracluster medium and the gravitational potential, we constrain the NFW profiles in a sample of 44 X-ray luminous galaxy clusters observed with XMM-Newton in the redshift range 0
.1-0.3. We evaluate several systematic uncertainties that affect our reconstruction of the X-ray masses. We measure the concentration c200, the dark mass M200 and the gas mass fraction within R500 in all the objects of our sample, providing the largest dataset of mass parameters for galaxy clusters in this redshift range. We confirm that a tight correlation between c200 and M200 is present and in good agreement with the predictions from numerical simulations and previous observations. When we consider a subsample of relaxed clusters that host a Low-Entropy-Core (LEC), we measure a flatter c-M relation with a total scatter that is lower by 40 per cent. From the distribution of the estimates of c200 and M200, with associated statistical (15-25%) and systematic (5-15%) errors, we use the predicted values from semi-analytic prescriptions calibrated through N-body numerical runs and measure sigma_8*Omega_m^(0.60+-0.03)= 0.45+-0.01 (at 2 sigma level, statistical only) for the subsample of the clusters where the mass reconstruction has been obtained more robustly, and sigma_8*Omega_m^(0.56+-0.04) = 0.39+-0.02 for the subsample of the 11 more relaxed LEC objects. With the further constraint from the fgas distribution in our sample, we break the degeneracy in the sigma_8-Omega_m plane and obtain the best-fit values sigma_8~1.0+-0.2 (0.75+-0.18 when the subsample of the more relaxed objects is considered) and Omega_m = 0.26+-0.01.
As the end products of the hierarchical process of cosmic structure formation, galaxy clusters present some predictable properties, like those mostly driven by gravity, and some others, more affected by astrophysical dissipative processes, that can b
e recovered from observations and that show remarkable universal behaviour once rescaled by halo mass and redshift. However, a consistent picture that links these universal radial profiles and the integrated values of the thermodynamical quantities of the intracluster medium, also quantifying the deviations from the standard self-similar gravity-driven scenario, has to be demonstrated. In this work, we use a semi-analytic model based on a universal pressure profile in hydrostatic equilibrium within a cold dark matter halo with a defined relation between mass and concentration to reconstruct the scaling laws between the X-ray properties of galaxy clusters. We also quantify any deviation from the self-similar predictions in terms of temperature dependence of a few physical quantities such as the gas mass fraction, the relation between spectroscopic temperature and its global value, and, if present, the hydrostatic mass bias. This model allows to reconstruct both the observed profiles and the scaling laws between integrated quantities. We use the Planck-selected ESZ sample to calibrate the predicted scaling laws between gas mass, temperature, luminosity and total mass. Our universal model reproduces well the observed thermodynamic properties and provides a way to interpret the observed deviations from the standard self-similar behaviour. By combining these results with the constraints on the observed $Y_{SZ}-T$ relation, we show how we can quantify the level of gas clumping affecting the studied sample, estimate the clumping-free gas mass fraction, and suggest the average level of hydrostatic bias present.
The distribution of mass in the halos of galaxies and galaxy clusters has been probed observationally, theoretically, and in numerical simulations. Yet there is still confusion about which of several suggested parameterized models is the better repre
sentation, and whether these models are universal. We use the temperature and density profiles of the intracluster medium as measured by X-ray observations of 11 relaxed galaxy clusters to investigate mass models for the halo using a thorough Bayesian statistical analysis. We make careful comparisons between two- and three-parameter models, including the issue of a universal third parameter. We find that, of the two-parameter models, the NFW is the best representation, but we also find moderate statistical evidence that a generalized three-parameter NFW model with a freely varying inner slope is preferred, despite penalizing against the extra degree of freedom. There is a strong indication that this inner slope needs to be determined for each cluster individually, i.e. some clusters have central cores and others have steep cusps. The mass-concentration relation of our sample is in reasonable agreement with predictions based on numerical simulations.