ﻻ يوجد ملخص باللغة العربية
Recently, a surprising low-temperature behavior has been revealed in a two-leg ladder Ising model with trimer rungs (Weiguo Yin, arXiv:2006.08921). Motivated by these findings, we study this model from another perspective and demonstrate that the reported observations are related to a critical phenomenon in the standard Ising chain. We also discuss a related curiosity, namely, the emergence of a power-law behavior characterized by quasicritical exponents.
Weakly coupled Ising chains provide a condensed-matter realization of confinement. In these systems, kinks and antikinks bind into mesons due to an attractive interaction potential that increases linearly with the distance between the particles. Whil
Quasi-one-dimensional lattice systems such as flux ladders with artificial gauge fields host rich quantum-phase diagrams that have attracted great interest. However, so far, most of the work on these systems has concentrated on zero-temperature phase
We revisit the two-dimensional quantum Ising model by computing renormalization group flows close to its quantum critical point. The low but finite temperature regime in the vicinity of the quantum critical point is squashed between two distinct non-
The Heisenberg-Ising spin ladder is one of the few short-range models showing confinement of elementary excitations without the need of an external field, neither transverse nor longitudinal. This feature makes the model suitable for an experimental
A full energy spectrum, magnetization and susceptibility of a spin-1/2 Heisenberg model on two edge-shared tetrahedra are exactly calculated by assuming two different coupling constants. It is shown that a ground state in zero field is either a singl