ﻻ يوجد ملخص باللغة العربية
Quasi-one-dimensional lattice systems such as flux ladders with artificial gauge fields host rich quantum-phase diagrams that have attracted great interest. However, so far, most of the work on these systems has concentrated on zero-temperature phases while the corresponding finite-temperature regime remains largely unexplored. The question if and up to which temperature characteristic features of the zero-temperature phases persist is relevant in experimental realizations. We investigate a two-leg ladder lattice in a uniform magnetic field and concentrate our study on chiral edge currents and momentum-distribution functions, which are key observables in ultracold quantum-gas experiments. These quantities are computed for hard-core bosons as well as noninteracting bosons and spinless fermions at zero and finite temperatures. We employ a matrix-product-state based purification approach for the simulation of strongly interacting bosons at finite temperatures and analyze finite-size effects. Our main results concern the vortex-fluid-to-Meissner crossover of strongly interacting bosons. We demonstrate that signatures of the vortex-fluid phase can still be detected at elevated temperatures from characteristic finite-momentum maxima in the momentum-distribution functions, while the vortex-fluid phase leaves weaker fingerprints in the local rung currents and the chiral edge current. In order to determine the range of temperatures over which these signatures can be observed, we introduce a suitable measure for the contrast of these maxima. The results are condensed into a finite-temperature crossover diagram for hard-core bosons.
We perform a density-matrix renormalization-group study of strongly interacting bosons on a three-leg ladder in the presence of a homogeneous flux. Focusing on one-third filling, we explore the phase diagram in dependence of the magnetic flux and the
We study the ground-state physics of a single-component Haldane model on a hexagonal two-leg ladder geometry with a particular focus on strongly interacting bosonic particles. We concentrate our analysis on the regime of less than one particle per un
A boson two--leg ladder in the presence of a synthetic magnetic flux is investigated by means of bosonization techniques and Density Matrix Renormalization Group (DMRG). We follow the quantum phase transition from the commensurate Meissner to the inc
We establish the phase diagram of the strongly-interacting Bose-Hubbard model defined on a two-leg ladder geometry in the presence of a homogeneous flux. Our work is motivated by a recent experiment [Atala et al., Nature Phys. 10, 588 (2014)], which
We study hard core bosons on a two leg ladder lattice under the orbital effect of a uniform magnetic field. At densities which are incommensurate with flux, the ground state is a Meissner state, or a vortex state, depending on the strength of the flu