ﻻ يوجد ملخص باللغة العربية
Acoustic event classification (AEC) and acoustic event detection (AED) refer to the task of detecting whether specific target events occur in audios. As long short-term memory (LSTM) leads to state-of-the-art results in various speech related tasks, it is employed as a popular solution for AEC as well. This paper focuses on investigating the dynamics of LSTM model on AEC tasks. It includes a detailed analysis on LSTM memory retaining, and a benchmarking of nine different pooling methods on LSTM models using 1.7M generated mixture clips of multiple events with different signal-to-noise ratios. This paper focuses on understanding: 1) utterance-level classification accuracy; 2) sensitivity to event position within an utterance. The analysis is done on the dataset for the detection of rare sound events from DCASE 2017 Challenge. We find max pooling on the prediction level to perform the best among the nine pooling approaches in terms of classification accuracy and insensitivity to event position within an utterance. To authors best knowledge, this is the first kind of such work focused on LSTM dynamics for AEC tasks.
This paper proposes a network architecture mainly designed for audio tagging, which can also be used for weakly supervised acoustic event detection (AED). The proposed network consists of a modified DenseNet as the feature extractor, and a global ave
In this paper, we present SpecAugment++, a novel data augmentation method for deep neural networks based acoustic scene classification (ASC). Different from other popular data augmentation methods such as SpecAugment and mixup that only work on the i
The goal of this paper is text-independent speaker verification where utterances come from in the wild videos and may contain irrelevant signal. While speaker verification is naturally a pair-wise problem, existing methods to produce the speaker embe
A recitation is a way of combining the words together so that they have a sense of rhythm and thus an emotional content is imbibed within. In this study we envisaged to answer these questions in a scientific manner taking into consideration 5 (five)
The understanding and interpretation of speech can be affected by various external factors. The use of face masks is one such factors that can create obstruction to speech while communicating. This may lead to degradation of speech processing and aff