ﻻ يوجد ملخص باللغة العربية
An excess of low-energy electronic recoil events over known backgrounds was recently observed in the XENON1T detector, where $285$ events are observed compared to an expected $232 pm 15$ events from the background-only fit to the data in the energy range 1-7 keV. This could be due to the beta decay of an unexpected tritium component, or possibly to new physics. One plausible new physics explanation for the excess is absorption of hidden photon dark matter relics with mass around $2.8$ keV and kinetic mixing of about $10^{-15}$, which can also explain cooling excesses in horizontal-branch (HB) stars. Such small gauge boson masses and couplings can naturally arise from type-IIB low scale string theory. We provide a fit of the XENON1T excess in terms of a minimal low scale type-IIB string theory parameter space and present some benchmark points which provide a good fit to the data. It is also demonstrated how the required transformation properties of the massless spectrum are obtained in intersecting D-brane models.
The low-energy electronic recoil spectrum in XENON1T provides an intriguing hint for potential new physics. At the same time, observations of horizontal branch stars favor the existence of a small amount of extra cooling compared to the one expected
We present a dark matter model to explain the excess events in the electron recoil data recently reported by the Xenon1T experiment. In our model, dark matter $chi$ annihilates into a pair of on-shell particles $phi$ which subsequently decay into $ps
The non-observation of dark matter (DM) by direct detection experiments suggests that any new interaction of DM with the Standard Model (SM) should be very weak. One of the simplest scenarios to achieve this is a dark sector that is charged under a n
We present direct detection constraints on the absorption of hidden-photon dark matter with particle masses in the range 1.2-30 eV$c^{-2}$ with the DAMIC experiment at SNOLAB. Under the assumption that the local dark matter is entirely constituted of
We study a generic model in which the dark sector is composed of a Majorana dark matter $chi_1$, its excited state $chi_2$, both at the electroweak scale, and a light dark photon $Z$ with $m_{Z} sim 10^{-4}$ eV. The light $Z$ enhances the self-scatte