ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting Visual Importance Across Graphic Design Types

96   0   0.0 ( 0 )
 نشر من قبل Aaron Hertzmann
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper introduces a Unified Model of Saliency and Importance (UMSI), which learns to predict visual importance in input graphic designs, and saliency in natural images, along with a new dataset and applications. Previous methods for predicting saliency or visual importance are trained individually on specialized datasets, making them limited in application and leading to poor generalization on novel image classes, while requiring a user to know which model to apply to which input. UMSI is a deep learning-based model simultaneously trained on images from different design classes, including posters, infographics, mobile UIs, as well as natural images, and includes an automatic classification module to classify the input. This allows the model to work more effectively without requiring a user to label the input. We also introduce Imp1k, a new dataset of designs annotated with importance information. We demonstrate two new design interfaces that use importance prediction, including a tool for adjusting the relative importance of design elements, and a tool for reflowing designs to new aspect ratios while preserving visual importance. The model, code, and importance dataset are available at https://predimportance.mit.edu .



قيم البحث

اقرأ أيضاً

Modeling layout is an important first step for graphic design. Recently, methods for generating graphic layouts have progressed, particularly with Generative Adversarial Networks (GANs). However, the problem of specifying the locations and sizes of d esign elements usually involves constraints with respect to element attributes, such as area, aspect ratio and reading-order. Automating attribute conditional graphic layouts remains a complex and unsolved problem. In this paper, we introduce Attribute-conditioned Layout GAN to incorporate the attributes of design elements for graphic layout generation by forcing both the generator and the discriminator to meet attribute conditions. Due to the complexity of graphic designs, we further propose an element dropout method to make the discriminator look at partial lists of elements and learn their local patterns. In addition, we introduce various loss designs following different design principles for layout optimization. We demonstrate that the proposed method can synthesize graphic layouts conditioned on different element attributes. It can also adjust well-designed layouts to new sizes while retaining elements original reading-orders. The effectiveness of our method is validated through a user study.
Graphic design is essential for visual communication with layouts being fundamental to composing attractive designs. Layout generation differs from pixel-level image synthesis and is unique in terms of the requirement of mutual relations among the de sired components. We propose a method for design layout generation that can satisfy user-specified constraints. The proposed neural design network (NDN) consists of three modules. The first module predicts a graph with complete relations from a graph with user-specified relations. The second module generates a layout from the predicted graph. Finally, the third module fine-tunes the predicted layout. Quantitative and qualitative experiments demonstrate that the generated layouts are visually similar to real design layouts. We also construct real designs based on predicted layouts for a better understanding of the visual quality. Finally, we demonstrate a practical application on layout recommendation.
A common network analysis task is comparison of two networks to identify unique characteristics in one network with respect to the other. For example, when comparing protein interaction networks derived from normal and cancer tissues, one essential t ask is to discover protein-protein interactions unique to cancer tissues. However, this task is challenging when the networks contain complex structural (and semantic) relations. To address this problem, we design ContraNA, a visual analytics framework leveraging both the power of machine learning for uncovering unique characteristics in networks and also the effectiveness of visualization for understanding such uniqueness. The basis of ContraNA is cNRL, which integrates two machine learning schemes, network representation learning (NRL) and contrastive learning (CL), to generate a low-dimensional embedding that reveals the uniqueness of one network when compared to another. ContraNA provides an interactive visualization interface to help analyze the uniqueness by relating embedding results and network structures as well as explaining the learned features by cNRL. We demonstrate the usefulness of ContraNA with two case studies using real-world datasets. We also evaluate through a controlled user study with 12 participants on network comparison tasks. The results show that participants were able to both effectively identify unique characteristics from complex networks and interpret the results obtained from cNRL.
We present a deep learning solution for estimating the incident illumination at any 3D location within a scene from an input narrow-baseline stereo image pair. Previous approaches for predicting global illumination from images either predict just a s ingle illumination for the entire scene, or separately estimate the illumination at each 3D location without enforcing that the predictions are consistent with the same 3D scene. Instead, we propose a deep learning model that estimates a 3D volumetric RGBA model of a scene, including content outside the observed field of view, and then uses standard volume rendering to estimate the incident illumination at any 3D location within that volume. Our model is trained without any ground truth 3D data and only requires a held-out perspective view near the input stereo pair and a spherical panorama taken within each scene as supervision, as opposed to prior methods for spatially-varying lighting estimation, which require ground truth scene geometry for training. We demonstrate that our method can predict consistent spatially-varying lighting that is convincing enough to plausibly relight and insert highly specular virtual objects into real images.
Dubbing is a technique for translating video content from one language to another. However, state-of-the-art visual dubbing techniques directly copy facial expressions from source to target actors without considering identity-specific idiosyncrasies such as a unique type of smile. We present a style-preserving visual dubbing approach from single video inputs, which maintains the signature style of target actors when modifying facial expressions, including mouth motions, to match foreign languages. At the heart of our approach is the concept of motion style, in particular for facial expressions, i.e., the person-specific expression change that is yet another essential factor beyond visual accuracy in face editing applications. Our method is based on a recurrent generative adversarial network that captures the spatiotemporal co-activation of facial expressions, and enables generating and modifying the facial expressions of the target actor while preserving their style. We train our model with unsynchronized source and target videos in an unsupervised manner using cycle-consistency and mouth expression losses, and synthesize photorealistic video frames using a layered neural face renderer. Our approach generates temporally coherent results, and handles dynamic backgrounds. Our results show that our dubbing approach maintains the idiosyncratic style of the target actor better than previous approaches, even for widely differing source and target actors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا