ﻻ يوجد ملخص باللغة العربية
Graphic design is essential for visual communication with layouts being fundamental to composing attractive designs. Layout generation differs from pixel-level image synthesis and is unique in terms of the requirement of mutual relations among the desired components. We propose a method for design layout generation that can satisfy user-specified constraints. The proposed neural design network (NDN) consists of three modules. The first module predicts a graph with complete relations from a graph with user-specified relations. The second module generates a layout from the predicted graph. Finally, the third module fine-tunes the predicted layout. Quantitative and qualitative experiments demonstrate that the generated layouts are visually similar to real design layouts. We also construct real designs based on predicted layouts for a better understanding of the visual quality. Finally, we demonstrate a practical application on layout recommendation.
It is common in graphic design humans visually arrange various elements according to their design intent and semantics. For example, a title text almost always appears on top of other elements in a document. In this work, we generate graphic layouts
Modeling layout is an important first step for graphic design. Recently, methods for generating graphic layouts have progressed, particularly with Generative Adversarial Networks (GANs). However, the problem of specifying the locations and sizes of d
We address the problem of layout generation for diverse domains such as images, documents, and mobile applications. A layout is a set of graphical elements, belonging to one or more categories, placed together in a meaningful way. Generating a new la
Despite significant recent progress on generative models, controlled generation of images depicting multiple and complex object layouts is still a difficult problem. Among the core challenges are the diversity of appearance a given object may possess
This paper introduces a Unified Model of Saliency and Importance (UMSI), which learns to predict visual importance in input graphic designs, and saliency in natural images, along with a new dataset and applications. Previous methods for predicting sa