ترغب بنشر مسار تعليمي؟ اضغط هنا

Noisy Student Training using Body Language Dataset Improves Facial Expression Recognition

80   0   0.0 ( 0 )
 نشر من قبل Vikas Kumar
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Facial expression recognition from videos in the wild is a challenging task due to the lack of abundant labelled training data. Large DNN (deep neural network) architectures and ensemble methods have resulted in better performance, but soon reach saturation at some point due to data inadequacy. In this paper, we use a self-training method that utilizes a combination of a labelled dataset and an unlabelled dataset (Body Language Dataset - BoLD). Experimental analysis shows that training a noisy student network iteratively helps in achieving significantly better results. Additionally, our model isolates different regions of the face and processes them independently using a multi-level attention mechanism which further boosts the performance. Our results show that the proposed method achieves state-of-the-art performance on benchmark datasets CK+ and AFEW 8.0 when compared to other single models.



قيم البحث

اقرأ أيضاً

Engagement is a key indicator of the quality of learning experience, and one that plays a major role in developing intelligent educational interfaces. Any such interface requires the ability to recognise the level of engagement in order to respond ap propriately; however, there is very little existing data to learn from, and new data is expensive and difficult to acquire. This paper presents a deep learning model to improve engagement recognition from images that overcomes the data sparsity challenge by pre-training on readily available basic facial expression data, before training on specialised engagement data. In the first of two steps, a facial expression recognition model is trained to provide a rich face representation using deep learning. In the second step, we use the models weights to initialize our deep learning based model to recognize engagement; we term this the engagement model. We train the model on our new engagement recognition dataset with 4627 engaged and disengaged samples. We find that the engagement model outperforms effective deep learning architectures that we apply for the first time to engagement recognition, as well as approaches using histogram of oriented gradients and support vector machines.
Presence of noise in the labels of large scale facial expression datasets has been a key challenge towards Facial Expression Recognition (FER) in the wild. During early learning stage, deep networks fit on clean data. Then, eventually, they start ove rfitting on noisy labels due to their memorization ability, which limits FER performance. This work proposes an effective training strategy in the presence of noisy labels, called as Consensual Collaborative Training (CCT) framework. CCT co-trains three networks jointly using a convex combination of supervision loss and consistency loss, without making any assumption about the noise distribution. A dynamic transition mechanism is used to move from supervision loss in early learning to consistency loss for consensus of predictions among networks in the later stage. Inference is done using a single network based on a simple knowledge distillation scheme. Effectiveness of the proposed framework is demonstrated on synthetic as well as real noisy FER datasets. In addition, a large test subset of around 5K images is annotated from the FEC dataset using crowd wisdom of 16 different annotators and reliable labels are inferred. CCT is also validated on it. State-of-the-art performance is reported on the benchmark FER datasets RAFDB (90.84%) FERPlus (89.99%) and AffectNet (66%). Our codes are available at https://github.com/1980x/CCT.
102 - Daniel S. Park , Yu Zhang , Ye Jia 2020
Recently, a semi-supervised learning method known as noisy student training has been shown to improve image classification performance of deep networks significantly. Noisy student training is an iterative self-training method that leverages augmenta tion to improve network performance. In this work, we adapt and improve noisy student training for automatic speech recognition, employing (adaptive) SpecAugment as the augmentation method. We find effective methods to filter, balance and augment the data generated in between self-training iterations. By doing so, we are able to obtain word error rates (WERs) 4.2%/8.6% on the clean/noisy LibriSpeech test sets by only using the clean 100h subset of LibriSpeech as the supervised set and the rest (860h) as the unlabeled set. Furthermore, we are able to achieve WERs 1.7%/3.4% on the clean/noisy LibriSpeech test sets by using the unlab-60k subset of LibriLight as the unlabeled set for LibriSpeech 960h. We are thus able to improve upon the previous state-of-the-art clean/noisy test WERs achieved on LibriSpeech 100h (4.74%/12.20%) and LibriSpeech (1.9%/4.1%).
100 - Devesh Walawalkar 2017
This paper proposes to expand the visual understanding capacity of computers by helping it recognize human sign language more efficiently. This is carried out through recognition of facial expressions, which accompany the hand signs used in this lang uage. This paper specially focuses on the popular Brazilian sign language (LIBRAS). While classifying different hand signs into their respective word meanings has already seen much literature dedicated to it, the emotions or intention with which the words are expressed havent primarily been taken into consideration. As from our normal human experience, words expressed with different emotions or mood can have completely different meanings attached to it. Lending computers the ability of classifying these facial expressions, can help add another level of deep understanding of what the deaf person exactly wants to communicate. The proposed idea is implemented through a deep neural network having a customized architecture. This helps learning specific patterns in individual expressions much better as compared to a generic approach. With an overall accuracy of 98.04%, the implemented deep network performs excellently well and thus is fit to be used in any given practical scenario.
104 - Tao Pu , Tianshui Chen , Yuan Xie 2020
Recognizing human emotion/expressions automatically is quite an expected ability for intelligent robotics, as it can promote better communication and cooperation with humans. Current deep-learning-based algorithms may achieve impressive performance i n some lab-controlled environments, but they always fail to recognize the expressions accurately for the uncontrolled in-the-wild situation. Fortunately, facial action units (AU) describe subtle facial behaviors, and they can help distinguish uncertain and ambiguous expressions. In this work, we explore the correlations among the action units and facial expressions, and devise an AU-Expression Knowledge Constrained Representation Learning (AUE-CRL) framework to learn the AU representations without AU annotations and adaptively use representations to facilitate facial expression recognition. Specifically, it leverages AU-expression correlations to guide the learning of the AU classifiers, and thus it can obtain AU representations without incurring any AU annotations. Then, it introduces a knowledge-guided attention mechanism that mines useful AU representations under the constraint of AU-expression correlations. In this way, the framework can capture local discriminative and complementary features to enhance facial representation for facial expression recognition. We conduct experiments on the challenging uncontrolled datasets to demonstrate the superiority of the proposed framework over current state-of-the-art methods. Codes and trained models are available at https://github.com/HCPLab-SYSU/AUE-CRL.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا