ترغب بنشر مسار تعليمي؟ اضغط هنا

Varying Electronic Coupling at Graphene-Copper Interfaces Probed with Raman Spectroscopy

75   0   0.0 ( 0 )
 نشر من قبل Sunmin Ryu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As the synthesis of graphene on copper became one of the primary preparation methods for both fundamental research and industrial application, Raman spectra of graphene/Cu systems need to be quantitatively understood regarding how their interactions affect the electronic structure of graphene. Using multi-wavelength Raman spectroscopy, we investigated three types of graphene bound on Cu: graphene grown on Cu foils and Cu film/SiO2, and Cu-evaporated exfoliated graphene. 2D peak frequencies of the first two samples were ~17 cm-1 higher than expected for 1.96 eV excitation even when the effect of strain was considered. More notably, the upshift in 2D decreased with increasing excitation energy. Based on control experiments using Cu-evaporated graphene, we revealed that the spectral anomaly was induced by environment-dependent nonlinear dispersion in the electronic bands of graphene and determined the degree of the electronic modification. We also showed that the large upshifts of G and 2D peaks originating from differential thermal expansion of Cu could be significantly reduced by backing Cu films with dielectric substrates of insignificant thermal expansion. The quantitative analysis of electronic coupling between graphene and Cu presented in this study will be highly useful in characterizing as-grown graphene and possibly in other forms.



قيم البحث

اقرأ أيضاً

We grow AlN/4H-SiC and AlN/6H-SiC heterostructures by physical vapor deposition and characterize the heterointerface with nanoscale resolution. Furthermore, we investigate the spatial stress and strain distribution in these heterostructures using con focal Raman spectroscopy. We measure the spectral shifts of various vibrational Raman modes across the heterointerface and along the entire depth of the 4H- and 6H-SiC layers. Using the earlier experimental prediction for the phonon-deformation potential constants, we determine the stress tensor components in SiC as a function of the distance from the AlN/SiC heterointerface. In spite that the lattice parameter of SiC is smaller than that of AlN, the SiC layers are compressively strained at the heterointerface. This counterintuitive behavior is explained by different coefficients of thermal expansion of SiC and AlN when the heterostructures are cooled from growth to room temperature. The compressive stress values are maximum at the heterointerface, approaching one GPa, and relaxes to the equilibrium value on the scale of several tens of microns from the heterointerface.
Graphene edges are of particular interest, since their chirality determines the electronic properties. Here we present a detailed Raman investigation of graphene flakes with well defined edges oriented at different crystallographic directions. The po sition, width and intensity of G and D peaks at the edges are studied as a function of the incident light polarization. The D-band is strongest for light polarized parallel to the edge and minimum for perpendicular orientation. Raman mapping shows that the D peak is localized in proximity of the edge. The D to G ratio does not always show a significant dependence on edge orientation. Thus, even though edges can appear macroscopically smooth and oriented at well defined angles, they are not necessarily microscopically ordered.
182 - Nicola Ferralis 2010
The use of Raman scattering techniques to study the mechanical properties of graphene films is reviewed here. The determination of Gruneisen parameters of suspended graphene sheets under uni- and bi-axial strain is discussed and the values are compar ed to theoretical predictions. The effects of the graphene-substrate interaction on strain and to the temperature evolution of the graphene Raman spectra are discussed. Finally, the relation between mechanical and thermal properties is presented along with the characterization of thermal properties of graphene with Raman spectroscopy.
Gallium selenide (GaSe) is a 2D material with a thickness-dependent gap, strong non-linear optical coefficients and uncommon interband optical selection rules, making it interesting for optoelectronic and spintronic applications. In this work, we mon itor the oxidation dynamics of GaSe with thicknesses ranging from 10 to 200 nm using Raman spectroscopy. In ambient temperature and humidity conditions, the intensity of all Raman modes and the luminescence decrease rapidly with moderate exposure to above-gap illumination. Concurrently, several oxidation products appear in the Raman spectra: Ga$_2$Se$_3$, Ga$_2$O$_3$ and amorphous and crystalline selenium. We find that no safe measurement power exists for optical measurements on ultrathin GaSe in ambient conditions. We demonstrate that the simultaneous presence of oxygen, humidity, and above-gap illumination is required to activate this photo-oxidation process, which is attributed to the transfer of photo-generated charge carriers towards aqueous oxygen at the sample surface, generating highly reactive superoxide anions that rapidly degrade the sample and quench the optical response of the material.
241 - I. Calizo , W. Bao , F. Miao 2007
The room-temperature Raman signatures from graphene layers on sapphire and glass substrates were compared with those from graphene on GaAs substrate and on the standard Si/SiO2 substrate, which served as a reference. It was found that while G peak of graphene on Si/SiO2 and GaAs is positioned at 1580 cm-1 it is down-shifted by ~5 cm-1 for graphene-on-sapphire (GOS) and, in many cases, splits into doublets for graphene-on-glass (GOG) with the central frequency around 1580 cm-1. The obtained results are important for graphene characterization and its proposed graphene applications in electronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا