ترغب بنشر مسار تعليمي؟ اضغط هنا

Contrastive Variational Reinforcement Learning for Complex Observations

127   0   0.0 ( 0 )
 نشر من قبل Xiao Ma
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep reinforcement learning (DRL) has achieved significant success in various robot tasks: manipulation, navigation, etc. However, complex visual observations in natural environments remains a major challenge. This paper presents Contrastive Variational Reinforcement Learning (CVRL), a model-based method that tackles complex visual observations in DRL. CVRL learns a contrastive variational model by maximizing the mutual information between latent states and observations discriminatively, through contrastive learning. It avoids modeling the complex observation space unnecessarily, as the commonly used generative observation model often does, and is significantly more robust. CVRL achieves comparable performance with state-of-the-art model-based DRL methods on standard Mujoco tasks. It significantly outperforms them on Natural Mujoco tasks and a robot box-pushing task with complex observations, e.g., dynamic shadows. The CVRL code is available publicly at https://github.com/Yusufma03/CVRL.



قيم البحث

اقرأ أيضاً

Many real-world sequential decision making problems are partially observable by nature, and the environment model is typically unknown. Consequently, there is great need for reinforcement learning methods that can tackle such problems given only a st ream of incomplete and noisy observations. In this paper, we propose deep variational reinforcement learning (DVRL), which introduces an inductive bias that allows an agent to learn a generative model of the environment and perform inference in that model to effectively aggregate the available information. We develop an n-step approximation to the evidence lower bound (ELBO), allowing the model to be trained jointly with the policy. This ensures that the latent state representation is suitable for the control task. In experiments on Mountain Hike and flickering Atari we show that our method outperforms previous approaches relying on recurrent neural networks to encode the past.
Applying probabilistic models to reinforcement learning (RL) enables the application of powerful optimisation tools such as variational inference to RL. However, existing inference frameworks and their algorithms pose significant challenges for learn ing optimal policies, e.g., the absence of mode capturing behaviour in pseudo-likelihood methods and difficulties learning deterministic policies in maximum entropy RL based approaches. We propose VIREL, a novel, theoretically grounded probabilistic inference framework for RL that utilises a parametrised action-value function to summarise future dynamics of the underlying MDP. This gives VIREL a mode-seeking form of KL divergence, the ability to learn deterministic optimal polices naturally from inference and the ability to optimise value functions and policies in separate, iterative steps. In applying variational expectation-maximisation to VIREL we thus show that the actor-critic algorithm can be reduced to expectation-maximisation, with policy improvement equivalent to an E-step and policy evaluation to an M-step. We then derive a family of actor-critic methods from VIREL, including a scheme for adaptive exploration. Finally, we demonstrate that actor-critic algorithms from this family outperform state-of-the-art methods based on soft value functions in several domains.
Improving sample efficiency is a key research problem in reinforcement learning (RL), and CURL, which uses contrastive learning to extract high-level features from raw pixels of individual video frames, is an efficient algorithm~citep{srinivas2020cur l}. We observe that consecutive video frames in a game are highly correlated but CURL deals with them independently. To further improve data efficiency, we propose a new algorithm, masked contrastive representation learning for RL, that takes the correlation among consecutive inputs into consideration. In addition to the CNN encoder and the policy network in CURL, our method introduces an auxiliary Transformer module to leverage the correlations among video frames. During training, we randomly mask the features of several frames, and use the CNN encoder and Transformer to reconstruct them based on the context frames. The CNN encoder and Transformer are jointly trained via contrastive learning where the reconstructed features should be similar to the ground-truth ones while dissimilar to others. During inference, the CNN encoder and the policy network are used to take actions, and the Transformer module is discarded. Our method achieves consistent improvements over CURL on $14$ out of $16$ environments from DMControl suite and $21$ out of $26$ environments from Atari 2600 Games. The code is available at https://github.com/teslacool/m-curl.
Deep reinforcement learning is successful in decision making for sophisticated games, such as Atari, Go, etc. However, real-world decision making often requires reasoning with partial information extracted from complex visual observations. This paper presents Discriminative Particle Filter Reinforcement Learning (DPFRL), a new reinforcement learning framework for complex partial observations. DPFRL encodes a differentiable particle filter in the neural network policy for explicit reasoning with partial observations over time. The particle filter maintains a belief using learned discriminative update, which is trained end-to-end for decision making. We show that using the discriminative update instead of standard generative models results in significantly improved performance, especially for tasks with complex visual observations, because they circumvent the difficulty of modeling complex observations that are irrelevant to decision making. In addition, to extract features from the particle belief, we propose a new type of belief feature based on the moment generating function. DPFRL outperforms state-of-the-art POMDP RL models in Flickering Atari Games, an existing POMDP RL benchmark, and in Natural Flickering Atari Games, a new, more challenging POMDP RL benchmark introduced in this paper. Further, DPFRL performs well for visual navigation with real-world data in the Habitat environment.
A prominent technique for self-supervised representation learning has been to contrast semantically similar and dissimilar pairs of samples. Without access to labels, dissimilar (negative) points are typically taken to be randomly sampled datapoints, implicitly accepting that these points may, in reality, actually have the same label. Perhaps unsurprisingly, we observe that sampling negative examples from truly different labels improves performance, in a synthetic setting where labels are available. Motivated by this observation, we develop a debiased contrastive objective that corrects for the sampling of same-label datapoints, even without knowledge of the true labels. Empirically, the proposed objective consistently outperforms the state-of-the-art for representation learning in vision, language, and reinforcement learning benchmarks. Theoretically, we establish generalization bounds for the downstream classification task.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا