ترغب بنشر مسار تعليمي؟ اضغط هنا

Debiased Contrastive Learning

114   0   0.0 ( 0 )
 نشر من قبل Ching-Yao Chuang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

A prominent technique for self-supervised representation learning has been to contrast semantically similar and dissimilar pairs of samples. Without access to labels, dissimilar (negative) points are typically taken to be randomly sampled datapoints, implicitly accepting that these points may, in reality, actually have the same label. Perhaps unsurprisingly, we observe that sampling negative examples from truly different labels improves performance, in a synthetic setting where labels are available. Motivated by this observation, we develop a debiased contrastive objective that corrects for the sampling of same-label datapoints, even without knowledge of the true labels. Empirically, the proposed objective consistently outperforms the state-of-the-art for representation learning in vision, language, and reinforcement learning benchmarks. Theoretically, we establish generalization bounds for the downstream classification task.



قيم البحث

اقرأ أيضاً

Contrastive self-supervised learning has shown impressive results in learning visual representations from unlabeled images by enforcing invariance against different data augmentations. However, the learned representations are often contextually biase d to the spurious scene correlations of different objects or object and background, which may harm their generalization on the downstream tasks. To tackle the issue, we develop a novel object-aware contrastive learning framework that first (a) localizes objects in a self-supervised manner and then (b) debias scene correlations via appropriate data augmentations considering the inferred object locations. For (a), we propose the contrastive class activation map (ContraCAM), which finds the most discriminative regions (e.g., objects) in the image compared to the other images using the contrastively trained models. We further improve the ContraCAM to detect multiple objects and entire shapes via an iterative refinement procedure. For (b), we introduce two data augmentations based on ContraCAM, object-aware random crop and background mixup, which reduce contextual and background biases during contrastive self-supervised learning, respectively. Our experiments demonstrate the effectiveness of our representation learning framework, particularly when trained under multi-object images or evaluated under the background (and distribution) shifted images.
While supervised learning has enabled great progress in many applications, unsupervised learning has not seen such widespread adoption, and remains an important and challenging endeavor for artificial intelligence. In this work, we propose a universa l unsupervised learning approach to extract useful representations from high-dimensional data, which we call Contrastive Predictive Coding. The key insight of our model is to learn such representations by predicting the future in latent space by using powerful autoregressive models. We use a probabilistic contrastive loss which induces the latent space to capture information that is maximally useful to predict future samples. It also makes the model tractable by using negative sampling. While most prior work has focused on evaluating representations for a particular modality, we demonstrate that our approach is able to learn useful representations achieving strong performance on four distinct domains: speech, images, text and reinforcement learning in 3D environments.
158 - Ganqu Cui , Yufeng Du , Cheng Yang 2021
The recent emergence of contrastive learning approaches facilitates the research on graph representation learning (GRL), introducing graph contrastive learning (GCL) into the literature. These methods contrast semantically similar and dissimilar samp le pairs to encode the semantics into node or graph embeddings. However, most existing works only performed model-level evaluation, and did not explore the combination space of modules for more comprehensive and systematic studies. For effective module-level evaluation, we propose a framework that decomposes GCL models into four modules: (1) a sampler to generate anchor, positive and negative data samples (nodes or graphs); (2) an encoder and a readout function to get sample embeddings; (3) a discriminator to score each sample pair (anchor-positive and anchor-negative); and (4) an estimator to define the loss function. Based on this framework, we conduct controlled experiments over a wide range of architectural designs and hyperparameter settings on node and graph classification tasks. Specifically, we manage to quantify the impact of a single module, investigate the interaction between modules, and compare the overall performance with current model architectures. Our key findings include a set of module-level guidelines for GCL, e.g., simple samplers from LINE and DeepWalk are strong and robust; an MLP encoder associated with Sum readout could achieve competitive performance on graph classification. Finally, we release our implementations and results as OpenGCL, a modularized toolkit that allows convenient reproduction, standard model and module evaluation, and easy extension.
How can you sample good negative examples for contrastive learning? We argue that, as with metric learning, contrastive learning of representations benefits from hard negative samples (i.e., points that are difficult to distinguish from an anchor poi nt). The key challenge toward using hard negatives is that contrastive methods must remain unsupervised, making it infeasible to adopt existing negative sampling strategies that use true similarity information. In response, we develop a new family of unsupervised sampling methods for selecting hard negative samples where the user can control the hardness. A limiting case of this sampling results in a representation that tightly clusters each class, and pushes different classes as far apart as possible. The proposed method improves downstream performance across multiple modalities, requires only few additional lines of code to implement, and introduces no computational overhead.
120 - Tao Bai , Jinnan Chen , Jun Zhao 2020
Deep learning models are shown to be vulnerable to adversarial examples. Though adversarial training can enhance model robustness, typical approaches are computationally expensive. Recent works proposed to transfer the robustness to adversarial attac ks across different tasks or models with soft labels.Compared to soft labels, feature contains rich semantic information and holds the potential to be applied to different downstream tasks. In this paper, we propose a novel approach called Guided Adversarial Contrastive Distillation (GACD), to effectively transfer adversarial robustness from teacher to student with features. We first formulate this objective as contrastive learning and connect it with mutual information. With a well-trained teacher model as an anchor, students are expected to extract features similar to the teacher. Then considering the potential errors made by teachers, we propose sample reweighted estimation to eliminate the negative effects from teachers. With GACD, the student not only learns to extract robust features, but also captures structural knowledge from the teacher. By extensive experiments evaluating over popular datasets such as CIFAR-10, CIFAR-100 and STL-10, we demonstrate that our approach can effectively transfer robustness across different models and even different tasks, and achieve comparable or better results than existing methods. Besides, we provide a detailed analysis of various methods, showing that students produced by our approach capture more structural knowledge from teachers and learn more robust features under adversarial attacks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا