ﻻ يوجد ملخص باللغة العربية
We prove under certain assumptions no-hair theorems for non-canonical self-gravitating static multiple scalar fields in spherically symmetric spacetimes. It is shown that the only static, spherically symmetric and asymptotically flat black hole solutions consist of the Schwarzschild metric and a constant multi-scalar map. We also prove that there are no static, horizonless, asymptotically flat, spherically symmetric solutions with static scalar fields and a regular center. The last theorem shows that the static, asymptotically flat, spherically symmetric reflecting compact objects with Neumann boundary conditions can not support a non-trivial self-gravitating non-canonical (and canonical) multi-scalar map in their exterior spacetime regions. In order to prove the no-hair theorems we derive a new divergence identity.
We consider the Einstein-Dirac field equations describing a self-gravitating massive neutrino, looking for axially-symmetric exact solutions; in the search of general solutions, we find some that are specific and which have critical features, such as
We consider a self-gravitating system containing a globally timelike Killing vector and a nonlinear Born-Infeld electromagnetic field and scalar fields. We prove that under certain boundary conditions (asymptotically flat/AdS) there cant be any nontr
In this paper, we study the spontaneous scalarization of an extended, self-gravitating system which is static, cylindrically symmetric and possesses electromagnetic fields. We demonstrate that a real massive scalar field condenses on this Melvin magn
We studied spherically symmetric solutions in scalar-torsion gravity theories in which a scalar field is coupled to torsion with a derivative coupling. We obtained the general field equations from which we extracted a decoupled master equation, the s
A no-hair theorem for spherical black holes in scalar-tensor gravity is presented. Contrary to the existing theorems, which are proved in the Einstein conformal frame, this proof is performed entirely in the Jordan frame. The theorem is limited to sp