ﻻ يوجد ملخص باللغة العربية
We studied spherically symmetric solutions in scalar-torsion gravity theories in which a scalar field is coupled to torsion with a derivative coupling. We obtained the general field equations from which we extracted a decoupled master equation, the solution of which leads to the specification of all other unknown functions. We first obtained an exact solution which represents a new wormhole-like solution dressed with a regular scalar field. Then, we found large distance linearized spherically symmetric solutions in which the space asymptotically is AdS.
We search for self tuning solutions to the Einstein-scalar field equations for the simplest class of `Fab-Four models with constant potentials. We first review the conditions under which self tuning occurs in a cosmological spacetime, and by introduc
We obtain the static spherically symmetric solutions of a class of gravitational models whose additions to the General Relativity (GR) action forbid Ricci-flat, in particular, Schwarzschild geometries. These theories are selected to maintain the (fir
We study standard Einstein-Maxwell theory minimally coupled to a complex valued and self-interacting scalar field. We demonstrate that new, previously unnoticed spherically symmetric, charged black hole solutions with scalar hair exist in this model
We consider the Einstein-Dirac field equations describing a self-gravitating massive neutrino, looking for axially-symmetric exact solutions; in the search of general solutions, we find some that are specific and which have critical features, such as
We present a detailed study of the spherically symmetric solutions in Lorentz breaking massive gravity. There is an undetermined function $mathcal{F}(X, w_1, w_2, w_3)$ in the action of St{u}ckelberg fields $S_{phi}=Lambda^4int{d^4xsqrt{-g}mathcal{F}