ﻻ يوجد ملخص باللغة العربية
Neutrino oscillations in matter provide a unique probe of new physics. Leveraging the advent of neutrino appearance data from NOvA and T2K in recent years, we investigate the presence of CP-violating neutrino non-standard interactions in the oscillation data. We first show how to very simply approximate the expected NSI parameters to resolve differences between two long-baseline appearance experiments analytically. Then, by combining recent NOvA and T2K data, we find a tantalizing hint of CP-violating NSI preferring a new complex phase that is close to maximal: $phi_{emu}$ or $phi_{etau}approx3pi/2$ with $|epsilon_{emu}|$ or $|epsilon_{etau}|sim0.2$. We then compare the results from long-baseline data to constraints from IceCube and COHERENT.
Neutrino oscillations have become well-known phenomenon; the measurements of neutrino mixing angles and mass squared differences are continuously improving. Future oscillation experiments will eventually determine the remaining unknown neutrino param
We discuss the sensitivity reach of a neutrino factory measurement to non-standard neutrino interactions (NSI), which may exist as a low-energy manifestation of physics beyond the Standard Model. We use the muon appearance mode u_e --> u_mu and con
We study the effects of non-standard interactions on the oscillation pattern of atmospheric neutrinos. We use neutrino oscillograms as our main tool to infer the role of non-standard interactions (NSI) parameters at the probability level in the energ
Searching for non-standard neutrino interactions, as a means for discovering physics beyond the Standard Model, has one of the key goals of dedicated neutrino experiments, current and future. We demonstrate here that much of the parameter space acces
When neutrino masses arise from the exchange of neutral heavy leptons, as in most seesaw schemes, the effective lepton mixing matrix $N$ describing neutrino propagation is non-unitary, hence neutrinos are not exactly orthonormal. New CP violation pha