ترغب بنشر مسار تعليمي؟ اضغط هنا

Non standard neutrino interactions

187   0   0.0 ( 0 )
 نشر من قبل Omar Gustavo Miranda
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutrino oscillations have become well-known phenomenon; the measurements of neutrino mixing angles and mass squared differences are continuously improving. Future oscillation experiments will eventually determine the remaining unknown neutrino parameters, namely, the mass ordering, normal or inverted, and the CP-violating phase. On the other hand, the absolute mass scale of neutrinos could be probed by cosmological observations, single beta decay as well as by neutrinoless double beta decay experiments. Furthermore, the last one may shed light on the nature of neutrinos, Dirac or Majorana, by measuring the effective Majorana mass of neutrinos. However, the neutrino mass generation mechanism remains unknown. A well-motivated phenomenological approach to search for new physics, in the neutrino sector, is that of non-standard interactions. In this short review, the current constraints in this picture, as well as the perspectives from future experiments, are discussed.



قيم البحث

اقرأ أيضاً

We discuss the sensitivity reach of a neutrino factory measurement to non-standard neutrino interactions (NSI), which may exist as a low-energy manifestation of physics beyond the Standard Model. We use the muon appearance mode u_e --> u_mu and con sider two detectors, one at 3000 km and the other at 7000 km. Assuming the effects of NSI at the production and the detection are negligible, we discuss the sensitivities to NSI and the simultaneous determination of theta_{13} and delta by examining the effects in the neutrino propagation of various systems in which two NSI parameters epsilon_{alpha beta} are switched on. The sensitivities to off-diagonal epsilons are found to be excellent up to small values of theta_{13}. We demonstrate that the two-detector setting is powerful enough to resolve the theta_{13}-NSI confusion problem. We believe that the results obtained in this paper open the door to the possibility of using neutrino factory as a discovery machine for NSI while keeping its primary function of performing precision measurements of the lepton mixing parameters.
Searching for non-standard neutrino interactions, as a means for discovering physics beyond the Standard Model, has one of the key goals of dedicated neutrino experiments, current and future. We demonstrate here that much of the parameter space acces sible to such experiments is already ruled out by the RUN II data of the Large Hadron Collider experiment.
We study the effects of non-standard interactions on the oscillation pattern of atmospheric neutrinos. We use neutrino oscillograms as our main tool to infer the role of non-standard interactions (NSI) parameters at the probability level in the energ y range, $E in [1,20]$ GeV and zenith angle range, $cos theta in [-1,0]$. We compute the event rates for atmospheric neutrino events in presence of NSI parameters in the energy range $E in [1,10]$ GeV for two different detector configurations - a magnetized iron calorimeter and an unmagnetized liquid Argon time projection chamber which have different sensitivities to NSI parameters due to their complementary characteristics. As an application, we discuss how NSI parameter, $epsilon_{mutau}$ impacts the determination of the correct octant of $theta_{23}$.
We formulate an Effective Field Theory (EFT) for Non Standard neutrino Interactions (NSI) in elastic scattering with light quarks, leptons, gluons and photons, including all possible operators of dimension 5, 6 and 7. We provide the expressions for t he cross sections in coherent neutrino-nucleus scattering and in deep inelastic scattering. Assuming single operator dominance we constrain the respective Wilson coefficient using the measurements by the COHERENT and CHARM collaborations. We also point out the constraining power of future elastic neutrino-nucleus scattering experiments. Finally, we explore the implications of the bounds for SMEFT operators above the electroweak breaking scale.
One of the major open questions in particle physics is the issue of the neutrino mass ordering (NMO). The current data of the two long-baseline experiments NO$ u$A and T2K, interpreted in the standard 3-flavor scenario, provide a $sim2.4sigma$ indica tion in favor of the normal neutrino mass ordering. We show that such an indication is completely washed out if one assumes the existence of neutral-current non-standard interactions (NSI) of the flavor changing type involving the $e-tau$ flavors. This implies that the claim for a discovery of the NMO will require a careful consideration of the impact of hypothetical NSI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا