ﻻ يوجد ملخص باللغة العربية
For material modeling of microstructured media, an accurate characterization of the underlying microstructure is indispensable. Mathematically speaking, the overall goal of microstructure characterization is to find simple functionals which describe the geometric shape as well as the composition of the microstructures under consideration, and enable distinguishing microstructures with distinct effective material behavior. For this purpose, we propose using Minkowski tensors, in general, and the quadratic normal tensor, in particular, and introduce a computational algorithm applicable to voxel-based microstructure representations. Rooted in the mathematical field of integral geometry, Minkowski tensors associate a tensor to rather general geometric shapes, which make them suitable for a wide range of microstructured material classes. Furthermore, they satisfy additivity and continuity properties, which makes them suitable and robust for large-scale applications. We present a modular algorithm for computing the quadratic normal tensor of digital microstructures. We demonstrate multigrid convergence for selected numerical examples and apply our approach to a variety of microstructures. Strikingly, the presented algorithm remains unaffected by inaccurate computation of the interface area. The quadratic normal tensor may be used for engineering purposes, such as mean-field homogenization or as target value for generating synthetic microstructures.
In this paper, based on the idea of self-adjusting steepness based schemes[5], a two-dimensional calculation method of steepness parameter is proposed, and thus a two-dimensional self-adjusting steepness based limiter is constructed. With the applica
Analysis of reactive-diffusion simulations requires a large number of independent model runs. For each high-fidelity simulation, inputs are varied and the predicted mixing behavior is represented by changes in species concentration. It is then requir
For the high dimensional data representation, nonnegative tensor ring (NTR) decomposition equipped with manifold learning has become a promising model to exploit the multi-dimensional structure and extract the feature from tensor data. However, the e
We propose a new algorithm for computing the tensor rank decomposition or canonical polyadic decomposition of higher-order tensors subject to a rank and genericity constraint. Reformulating this as a system of polynomial equations allows us to levera
This article presents numerical investigations on accuracy and convergence properties of several numerical approaches for simulating steady state flows in heterogeneous aquifers. Finite difference, finite element, discontinuous Galerkin, spectral, an