ﻻ يوجد ملخص باللغة العربية
Failure region, where failure-causing inputs reside, has provided many insights to enhance testing effectiveness of many testing methods. Failure region may also provide some important information to support other processes such as software debugging. When a testing method detects a software failure, indicating that a failure-causing input is identified, the next important question is about how to identify the failure region based on this failure-causing input, i.e., Identification of Failure Regions (IFR). In this paper, we introduce a new IFR strategy, namely Search for Boundary (SB), to identify an approximate failure region of a numeric input domain. SB attempts to identify additional failure-causing inputs that are as close to the boundary of the failure region as possible. To support SB, we provide a basic procedure, and then propose two methods, namely Fixed-orientation Search for Boundary (FSB) and Diverse-orientation Search for Boundary (DSB). In addition, we implemented an automated experimentation platform to integrate these methods. In the experiments, we evaluated the proposed SB methods using a series of simulation studies andempirical studies with different types of failure regions. The results show that our methods can effectively identify a failure region, within the limited testing resources.
Automated debugging techniques, such as Fault Localisation (FL) or Automated Program Repair (APR), are typically designed under the Single Fault Assumption (SFA). However, in practice, an unknown number of faults can independently cause multiple test
Dynamic programming languages, such as PHP, JavaScript, and Python, provide built-in data structures including associative arrays and objects with similar semantics-object properties can be created at run-time and accessed via arbitrary expressions.
A simple computer-based algorithm has been developed to identify pre-modern coins minted from the same dies, intending mainly coins minted by hand-made dies designed to be applicable to images taken from auction websites or catalogs. Though the metho
Blind system identification is known to be a hard ill-posed problem and without further assumptions, no unique solution is at hand. In this contribution, we are concerned with the task of identifying an ARX model from only output measurements. Driven
We investigate the problem of classifying a line of program as containing a vulnerability or not using machine learning. Such a line-level classification task calls for a program representation which goes beyond reasoning from the tokens present in t