ﻻ يوجد ملخص باللغة العربية
A simple computer-based algorithm has been developed to identify pre-modern coins minted from the same dies, intending mainly coins minted by hand-made dies designed to be applicable to images taken from auction websites or catalogs. Though the method is not intended to perform a complete automatic classification, which would require more complex and intensive algorithms accessible to experts of computer vision its simplicity of use and lack of specific requirement about the quality of pictures can provide help and complementary information to the visual inspection, adding quantitative measurements of the distance between pairs of different coins. The distance metric is based on a number of pre-defined reference points that mark key features of the coin to identify the set of coins they have been minted from.
This paper describes a new efficient conjugate subgradient algorithm which minimizes a convex function containing a least squares fidelity term and an absolute value regularization term. This method is successfully applied to the inversion of ill-con
A principal component analysis (PCA) of clean microcalorimeter pulse records can be a first step beyond statistically optimal linear filtering of pulses towards a fully non-linear analysis. For PCA to be practical on spectrometers with hundreds of se
For experiments with high arrival rates, reliable identification of nearly-coincident events can be crucial. For calorimetric measurements to directly measure the neutrino mass such as HOLMES, unidentified pulse pile-ups are expected to be a leading
Deep learning is a rapidly-evolving technology with possibility to significantly improve physics reach of collider experiments. In this study we developed a novel algorithm of vertex finding for future lepton colliders such as the International Linea
The models and weights of prior trained Convolutional Neural Networks (CNN) created to perform automated isotopic classification of time-sequenced gamma-ray spectra, were utilized to provide source domain knowledge as training on new domains of poten