ﻻ يوجد ملخص باللغة العربية
A thermal gradient and/or a chemical potential gradient in a conducting medium can lead to an electric field, an effect known as thermoelectric effect or Seebeck effect. In the context of heavy-ion collisions, we estimate the thermoelectric transport coefficients for quark matter within the ambit of the Nambu-Jona Lasinio (NJL) model. We estimate the thermal conductivity, electrical conductivity, and the Seebeck coefficient of hot and dense quark matter. These coefficients are calculated using the relativistic Boltzmann transport equation within relaxation time approximation. The relaxation times for the quarks are estimated from the quark-quark and quark-antiquark scattering through in-medium meson exchange within the NJL model.
We compute the transport coefficients, namely, the coefficients of shear and bulk viscosity as well as thermal conductivity for hot and dense quark matter. The calculations are performed within the Nambu- Jona Lasinio (NJL) model. The estimation of t
We have attempted to build first some simplified model to map the interaction of quarks and gluons, which can be contained by their thermodynamical quantity like entropy density, obtained from calculation of lattice quantum chromo dynamics (LQCD). Wi
We study the effects of a finite chemical potential on the occurrence of cavitation in a quark gluon plasma (QGP). We solve the evolution equations of second order viscous relativistic hydrodynamics using three different equations of state. The first
We study the properties of the strongly-coupled quark-gluon plasma with a multistage model of heavy ion collisions that combines the T$_mathrm{R}$ENTo initial condition ansatz, free-streaming, viscous relativistic hydrodynamics, and a relativistic ha
In presence of the non-ideal plasma effects, Heavy Quarks (HQs) carry out non linear random walk inside Quark-Gluon Plasma (QGP) and in the small momentum transfer limit, the evolution of the HQ distribution is dictated by the Non Linear Fokker-Planc