ترغب بنشر مسار تعليمي؟ اضغط هنا

From Non-interacting to Interacting Picture of Thermodynamics and Transport Coefficients for Quark Gluon Plasma

96   0   0.0 ( 0 )
 نشر من قبل Sabyasachi Ghosh
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We have attempted to build first some simplified model to map the interaction of quarks and gluons, which can be contained by their thermodynamical quantity like entropy density, obtained from calculation of lattice quantum chromo dynamics (LQCD). With respect to entropy density of the standard non-interacting massless quark gluon plasma (QGP), its interacting values from LQCD simulation are reduced as we go from higher to lower temperature through the cross-over of quark-hadron phase transition. By parameterizing increasing degeneracy factor or increasing interaction-fugacity or decreasing thermal width of quarks and gluons with temperature, we have matched LQCD data.Using that interaction picture, shear viscosity and electrical conductivity are calculated. For getting nearly perfect fluid nature of QGP, interaction might have some role when we consider temperature dependent thermal width.



قيم البحث

اقرأ أيضاً

We have attempted to build a parametric based simplified and analytical model to map the interaction of quarks and gluons in presence of magnetic field, which has been constrained by quark condensate and thermodynamical quantities like pressure, ener gy density etc., obtained from the calculation of lattice quantum chromodynamics. To fulfill that mapping, we have assumed a parametric temperature and magnetic field dependent degeneracy factor, average energy, momentum and velocity of quarks and gluons. Implementing this QCD interaction in calculation of transport coefficient at finite magnetic field, we have noticed that magnetic field and interaction both are two dominating sources, for which the values of transport coefficients can be reduced. Though the methodology is not so robust, but with the help of its simple parametric expressions, one can get a quick rough estimation of any phenomenological quantity, influenced by temperature and magnetic field dependent QCD interaction.
We study the diffusion properties of the strongly interacting quark-gluon plasma (sQGP) and evaluate the diffusion coefficient matrix for the baryon ($B$), strange ($S$) and electric ($Q$) charges - $kappa_{qq}$ ($q,q = B, S, Q$) and show their depen dence on temperature $T$ and baryon chemical potential $mu_B$. The non-perturbative nature of the sQGP is evaluated within the Dynamical Quasi-Particle Model (DQPM) which is matched to reproduce the equation of state of the partonic matter above the deconfinement temperature $T_c$ from lattice QCD. The calculation of diffusion coefficients is based on two methods: i) the Chapman-Enskog method for the linearized Boltzmann equation, which allows to explore non-equilibrium corrections for the phase-space distribution function in leading order of the Knudsen numbers as well as ii) the relaxation time approximation (RTA). In this work we explore the differences between the two methods. We find a good agreement with the available lattice QCD data in case of the electric charge diffusion coefficient (or electric conductivity) at vanishing baryon chemical potential as well as a qualitative agreement with the recent predictions from the holographic approach for all diagonal components of the diffusion coefficient matrix. The knowledge of the diffusion coefficient matrix is also of special interest for more accurate hydrodynamic simulations.
We study the effects of a finite chemical potential on the occurrence of cavitation in a quark gluon plasma (QGP). We solve the evolution equations of second order viscous relativistic hydrodynamics using three different equations of state. The first one was derived in lattice QCD and represents QGP at zero chemical potential. It was previously used in the study of cavitation. The second equation of state also comes from lattice QCD and is a recent parametrization of the QGP at finite chemical potential. The third one is similar to the MIT equation of state with chemical potential and includes nonperturbative effects through the gluon condensates. We conclude that at finite chemical potential cavitation in the QGP occurs earlier than at zero chemical potential. We also consider transport coefficients from a holographic model of a non-conformal QGP at zero chemical potential. In this case cavitation does not occur.
Jets and photons could play an important role in finding the transport coefficients of the quark-gluon plasma. To this end we analyze their interaction with a non-equilibrium quark-gluon plasma. Using new field-theoretical tools we derive two-point c orrelators for the plasma which show how instabilities evolve in time. This allows us, for the first time, to derive finite rates of interaction with the medium. We furthermore show that coherent, long-wavelength instability fields in the Abelian limit do not modify the rate of photon emission or jet-medium interaction.
232 - Salah Hamieh 2000
Lattice-QCD results provide an opportunity to model, and extrapolate to finite baryon density, the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data, the propertie s of resulting QGP equations of state (EoS) are developed. We show that the physical properties of the dense matter fireball formed in heavy ion collision experiments at CERN-SPS are well described by the QGP-EoS we presented. We also estimate the properties of the fireball formed in early stages of nuclear collision, and argue that QGP formation must be expected down to 40A GeV in central Pb--Pb interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا