ترغب بنشر مسار تعليمي؟ اضغط هنا

TCI for SDEs with irregular drifts

96   0   0.0 ( 0 )
 نشر من قبل Chenggui Yuan
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain $T_2(C)$ for stochastic differential equations with Dini continuous drift and $T_1(C)$ stochastic differential equations with singular coefficients.



قيم البحث

اقرأ أيضاً

103 - Guohuan Zhao 2020
We investigate the well-posedness of distribution dependent SDEs with singular coefficients. Existence is proved when the diffusion coefficient satisfies some non-degeneracy and mild regularity assumptions, and the drift coefficient satisfies an inte grability condition and a continuity condition with respect to the (generalized) total variation distance. Uniqueness is also obtained under some additional Lipschitz type continuity assumptions.
We prove the unique weak solvability of time-inhomogeneous stochastic differential equations with additive noises and drifts in critical Lebsgue space $L^q([0,T]; L^{p}(mathbb{R}^d))$ with $d/p+2/q=1$. The weak uniqueness is obtained by solving corre sponding Kolmogorovs backward equations in some second order Sobolev spaces, which is analytically interesting in itself.
In this paper, utilizing Wangs Harnack inequality with power and the Banach fixed point theorem, the weak well-posedness for distribution dependent SDEs with integrable drift is investigated. In addition, using a trick of decoupled method, some regul arity such as relative entropy and Sobolevs estimate of invariant probability measure are proved. Furthermore, by comparing two stationary Fokker-Planck-Kolmogorov equations, the existence and uniqueness of invariant probability measure for McKean-Vlasov SDEs are obtained by log-Sobolevs inequality and Banachs fixed theorem. Finally, some examples are presented.
99 - Guohuan Zhao 2020
We prove the existence and uniqueness for SDEs with random and irregular coefficients through solving a backward stochastic Kolmogorov equation and using a modified Zvonkins type transformation.
In this paper, we study (strong and weak) existence and uniqueness of a class of non-Markovian SDEs whose drift contains the derivative in the sense of distributionsof a continuous function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا