ﻻ يوجد ملخص باللغة العربية
In this paper, utilizing Wangs Harnack inequality with power and the Banach fixed point theorem, the weak well-posedness for distribution dependent SDEs with integrable drift is investigated. In addition, using a trick of decoupled method, some regularity such as relative entropy and Sobolevs estimate of invariant probability measure are proved. Furthermore, by comparing two stationary Fokker-Planck-Kolmogorov equations, the existence and uniqueness of invariant probability measure for McKean-Vlasov SDEs are obtained by log-Sobolevs inequality and Banachs fixed theorem. Finally, some examples are presented.
By refining a recent result of Xie and Zhang, we prove the exponential ergodicity under a weighted variation norm for singular SDEs with drift containing a local integrable term and a coercive term. This result is then extended to singular reflecting
The paper investigates existence and uniqueness for a stochastic differential equation (SDE) with distributional drift depending on the law density of the solution. Those equations are known as McKean SDEs. The McKean SDE is interpreted in the sense
Regularity estimates and Bismut formula of $L^k$ ($kge 1$) intrinsic-Lions derivative are presented for singular McKean-Vlasov SDEs, where the noise coefficient belongs to a local Sobolev space, and the drift contains a locally integrable time-space
We investigate the well-posedness of distribution dependent SDEs with singular coefficients. Existence is proved when the diffusion coefficient satisfies some non-degeneracy and mild regularity assumptions, and the drift coefficient satisfies an inte
The work concerns the stability for a type of multivalued McKean-Vlasov SDEs with non-Lipschitz coefficients. First, we prove the existence and uniqueness of strong solutions for multivalued McKean-Vlasov stochastic differential equations with non-Li