ﻻ يوجد ملخص باللغة العربية
The double electron E1 transition energies, probabilities, and oscillator strengths between the $2s2p^{n}$ and $1s^{2}2p^{n-1}$($1!leq!nleq!6$) configurations of Xe$^{q+}$($47!leq!qleq!52$) ions with different spectator electrons have been calculated based on the multi-configuration Dirac-Hartree-Fock method. A reasonable electron correlation model is constructed with the aid of the active space method. The finite mass of nuclear, Breit interaction and QED effects have also been included. The calculated results are in good agreement with the available data. The theoretical spectra of different spectator electrons of the double K hole state have been predicted. The spectator electron effects on the transition spectra have been analyzed in detail. The present results will be helpful for analyzing the high energy X-ray spectrum observed from the interaction between high energy highly charged ions and the surface.
The x-ray energies and transition rates associated with single and double electron radiative transitions from the double K hole state $2s2p$ to the $1s2s$ and $1s^{2}$ configurations of 11 He-like ions ($10!leq!Z!leq!47$) are evaluated using the full
Absolute cross sections for electron-impact single ionisation (EISI) of multiply charged tungsten ions (W$^{q+}$) with charge states in the range $ 11 leq q leq 18$ in the electron-ion collision energy ranges from below the respective ionisation thre
We resonantly excite the $K$ series of O$^{5+}$ and O$^{6+}$ up to principal quantum number $n=11$ with monochromatic x rays, producing $K$-shell holes, and observe their relaxation by soft-x-ray emission. Some photoabsorption resonances of O$^{5+}$
A new mechanism of nuclear excitation via two-photon electron transitions (NETP) is proposed and studied theoretically. As a generic example, detailed calculations are performed for the $E1E1$ $1s2s,^1S_0 rightarrow 1s^2,^1S_0$ two-photon decay of He
Energies of two-electron one-photon transitions from initial double K-hole states were computed using the Dirac-Fock model. The transition energies of competing processes, the K$alpha$ hypersatellites, were also computed. The results are compared to experiment and to other theoretical calculations.