ﻻ يوجد ملخص باللغة العربية
We resonantly excite the $K$ series of O$^{5+}$ and O$^{6+}$ up to principal quantum number $n=11$ with monochromatic x rays, producing $K$-shell holes, and observe their relaxation by soft-x-ray emission. Some photoabsorption resonances of O$^{5+}$ reveal strong two-electron--one-photon (TEOP) transitions. We find that for the $[(1s,2s)_1,5p_{3/2}]_{3/2;1/2}$ states, TEOP relaxation is by far stronger than the radiative decay and competes with the usually much faster Auger decay path. This enhanced TEOP decay arises from a strong correlation with the near-degenerate upper states $[(1s,2p_{3/2})_1,4s]_{3/2;1/2}$ of a Li-like satellite blend of the He-like $Kalpha$ transition. Even in three-electron systems, TEOP transitions can play a dominant role, and the present results should guide further research on the ubiquitous and abundant many-electron ions where electronic energy degeneracies are far more common and configuration mixing is stronger.
The x-ray energies and transition rates associated with single and double electron radiative transitions from the double K hole state $2s2p$ to the $1s2s$ and $1s^{2}$ configurations of 11 He-like ions ($10!leq!Z!leq!47$) are evaluated using the full
The double electron E1 transition energies, probabilities, and oscillator strengths between the $2s2p^{n}$ and $1s^{2}2p^{n-1}$($1!leq!nleq!6$) configurations of Xe$^{q+}$($47!leq!qleq!52$) ions with different spectator electrons have been calculated
We report on the observation of discrete structures in the electron energy distribution for strong field double ionization of Argon at 394 nm. The experimental conditions were chosen in order to ensure a non-sequential ejection of both electrons with
A new mechanism of nuclear excitation via two-photon electron transitions (NETP) is proposed and studied theoretically. As a generic example, detailed calculations are performed for the $E1E1$ $1s2s,^1S_0 rightarrow 1s^2,^1S_0$ two-photon decay of He
Energies of two-electron one-photon transitions from initial double K-hole states were computed using the Dirac-Fock model. The transition energies of competing processes, the K$alpha$ hypersatellites, were also computed. The results are compared to experiment and to other theoretical calculations.