ﻻ يوجد ملخص باللغة العربية
The popular softmax loss and its recent extensions have achieved great success in the deep learning-based image classification. However, the data for training image classifiers usually has different quality. Ignoring such problem, the correct classification of low quality data is hard to be solved. In this paper, we discover the positive correlation between the feature norm of an image and its quality through careful experiments on various applications and various deep neural networks. Based on this finding, we propose a contraction mapping function to compress the range of feature norms of training images according to their quality and embed this contraction mapping function into softmax loss or its extensions to produce novel learning objectives. The experiments on various classification applications, including handwritten digit recognition, lung nodule classification, face verification and face recognition, demonstrate that the proposed approach is promising to effectively deal with the problem of learning on the data with different quality and leads to the significant and stable improvements in the classification accuracy.
We propose Sequential Feature Filtering Classifier (FFC), a simple but effective classifier for convolutional neural networks (CNNs). With sequential LayerNorm and ReLU, FFC zeroes out low-activation units and preserves high-activation units. The seq
Clustering is one of the fundamental tasks in computer vision and pattern recognition. Recently, deep clustering methods (algorithms based on deep learning) have attracted wide attention with their impressive performance. Most of these algorithms com
Earth observation technologies, such as optical imaging and synthetic aperture radar (SAR), provide excellent means to monitor ever-growing urban environments continuously. Notably, in the case of large-scale disasters (e.g., tsunamis and earthquakes
Auto-annotation by ensemble of models is an efficient method of learning on unlabeled data. Wrong or inaccurate annotations generated by the ensemble may lead to performance degradation of the trained model. To deal with this problem we propose filte
Zero-shot learning (ZSL) aims to transfer knowledge from seen classes to unseen ones so that the latter can be recognised without any training samples. This is made possible by learning a projection function between a feature space and a semantic spa