ﻻ يوجد ملخص باللغة العربية
Auto-annotation by ensemble of models is an efficient method of learning on unlabeled data. Wrong or inaccurate annotations generated by the ensemble may lead to performance degradation of the trained model. To deal with this problem we propose filtering the auto-labeled data using a trained model that predicts the quality of the annotation from the degree of consensus between ensemble models. Using semantic segmentation as an example, we show the advantage of the proposed auto-annotation filtering over training on data contaminated with inaccurate labels. Moreover, our experimental results show that in the case of semantic segmentation, the performance of a state-of-the-art model can be achieved by training it with only a fraction (30$%$) of the original manually labeled data set, and replacing the rest with the auto-annotated, quality filtered labels.
Ensemble methods are generally regarded to be better than a single model if the base learners are deemed to be accurate and diverse. Here we investigate a semi-supervised ensemble learning strategy to produce generalizable blind image quality assessm
Automatic speech quality assessment is an important, transversal task whose progress is hampered by the scarcity of human annotations, poor generalization to unseen recording conditions, and a lack of flexibility of existing approaches. In this work,
In this article, we propose an approach that can make use of not only labeled EEG signals but also the unlabeled ones which is more accessible. We also suggest the use of data fusion to further improve the seizure prediction accuracy. Data fusion in
We propose a Regularization framework based on Adversarial Transformations (RAT) for semi-supervised learning. RAT is designed to enhance robustness of the output distribution of class prediction for a given data against input perturbation. RAT is an
Semi-supervised learning is becoming increasingly important because it can combine data carefully labeled by humans with abundant unlabeled data to train deep neural networks. Classic methods on semi-supervised learning that have focused on transduct