ترغب بنشر مسار تعليمي؟ اضغط هنا

Origins of eukaryotic excitability

100   0   0.0 ( 0 )
 نشر من قبل Kirsty Y. Wan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

All living cells interact dynamically with a constantly changing world. Eukaryotes in particular, evolved radically new ways to sense and react to their environment. These advances enabled new and more complex forms of cellular behavior in eukaryotes, including directional movement, active feeding, mating, or responses to predation. But what are the key events and innovations during eukaryogenesis that made all of this possible? Here we describe the ancestral repertoire of eukaryotic excitability and discuss five major cellular innovations that enabled its evolutionary origin. The innovations include a vastly expanded repertoire of ion channels, endomembranes as intracellular capacitors, a flexible plasma membrane, the emergence of cilia and pseudopodia, and the relocation of chemiosmotic ATP synthesis to mitochondria that liberated the plasma membrane for more complex electrical signaling involved in sensing and reacting. We conjecture that together with an increase in cell size, these new forms of excitability greatly amplified the degrees of freedom associated with cellular responses, allowing eukaryotes to vastly outperform prokaryotes in terms of both speed and accuracy. This comprehensive new perspective on the evolution of excitability enriches our view of eukaryogenesis and emphasizes behaviour and sensing as major contributors to the success of eukaryotes.



قيم البحث

اقرأ أيضاً

153 - D. Sornette 2009
Many illnesses are associated with an alteration of the immune system homeostasis due to any combination of factors, including exogenous bacterial insult, endogenous breakdown (e.g., development of a disease that results in immuno suppression), or an exogenous hit like surgery that simultaneously alters immune responsiveness and provides access to bacteria, or genetic disorder. We conjecture that, as a consequence of the co-evolution of the immune system of individuals with the ecology of pathogens, the homeostasis of the immune system requires the influx of pathogens. This allows the immune system to keep the ever present pathogens under control and to react and adjust fast to bursts of infections. We construct the simplest and most general system of rate equations which describes the dynamics of five compartments: healthy cells, altered cells, adaptive and innate immune cells, and pathogens. We study four regimes obtained with or without auto-immune disorder and with or without spontaneous proliferation of infected cells. Over all regimes, we find that seven different states are naturally described by the model: (i) strong healthy immune system, (ii) healthy organism with evanescent immune cells, (iii) chronic infections, (iv) strong infections, (v) cancer, (vi) critically ill state and (vii) death. The analysis of stability conditions demonstrates that these seven states depend on the balance between the robustness of the immune system and the influx of pathogens.
The microaerophilic magnetotactic bacterium Magnetospirillum gryphiswaldense swims along magnetic field lines using a single flagellum at each cell pole. It is believed that this magnetotactic behavior enables cells to seek optimal oxygen concentrati on with maximal efficiency. We analyse the trajectories of swimming M. gryphiswaldense cells in external magnetic fields larger than the earths field, and show that each cell can switch very rapidly (in < 0.2 s) between a fast and a slow swimming mode. Close to a glass surface, a variety of trajectories was observed, from straight swimming that systematically deviates from field lines to various helices. A model in which fast (slow) swimming is solely due to the rotation of the trailing (leading) flagellum can account for these observations. We determined the magnetic moment of this bacterium using a new method, and obtained a value of (2.0 $pm$ 0.6) $times$ $10^{-16}$ Am$^2$. This value is found to be consistent with parameters emerging from quantitative fitting of trajectories to our model.
287 - Tao Su , Ganhui Lan 2016
Collective cell motility plays central roles in various biological phenomena such as inflammatory response, wound healing, cancer metastasis and embryogenesis. These are biological demonstrations of the unjamming transition. However, contradictory to the typical density-driven jamming processes in particulate assemblies, cellular systems often get unjammed in highly packed, sometimes overcrowding tissue environments. In this work, we report that overcrowding can unjam gap-free monolayers through increasing isotropic compression. The transition boundary is determined by the isotropic compression and the cell-cell adhesion. We explicitly construct the free energy landscape for the T1 topological transition during monolayer rearrangement, and find that it evolves from single-barrier shape to double-barrier shape upon completion of the unjamming process. Our analyses reveal that the overcrowding and adhesion induced unjamming transition reflects the mechanical yielding of the highly deformable monolayer, which differs from those caused by loosing up a packed particulate assembly.
We investigate the geometrical and mechanical properties of adherent cells characterized by a highly anisotropic actin cytoskeleton. Using a combination of theoretical work and experiments on micropillar arrays, we demonstrate that the shape of the c ell edge is accurately described by elliptical arcs, whose eccentricity expresses the degree of anisotropy of the internal cell stresses. This results in a spatially varying tension along the cell edge, that significantly affects the traction forces exerted by the cell on the substrate. Our work highlights the strong interplay between cell mechanics and geometry and paves the way towards the reconstruction of cellular forces from geometrical data.
In a multitude of lifes processes, cilia and flagella are found indispensable. Recently, the biflagellated chlorophyte alga Chlamydomonas has become a model organism for the study of ciliary coordination and synchronization. Here, we use high-speed i maging of single pipette-held cells to quantify the rich dynamics exhibited by their flagella. Underlying this variability in behaviour, are biological dissimilarities between the two flagella - termed cis and trans, with respect to a unique eyespot. With emphasis on the wildtype, we use digital tracking with sub-beat-cycle resolution to obtain limit cycles and phases for self-sustained flagellar oscillations. Characterizing the phase-synchrony of a coupled pair, we find that during the canonical swimming breaststroke the cis flagellum is consistently phase-lagged relative to, whilst remaining robustly phase-locked with, the trans flagellum. Transient loss of synchrony, or phase-slippage, may be triggered stochastically, in which the trans flagellum transitions to a second mode of beating with attenuated beat-envelope and increased frequency. Further, exploiting this algas ability for flagellar regeneration, we mechanically induced removal of one or the other flagellum of the same cell to reveal a striking disparity between the beating of the cis vs trans flagellum, in isolation. This raises further questions regarding the synchronization mechanism of Chlamydomonas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا