ﻻ يوجد ملخص باللغة العربية
Many illnesses are associated with an alteration of the immune system homeostasis due to any combination of factors, including exogenous bacterial insult, endogenous breakdown (e.g., development of a disease that results in immuno suppression), or an exogenous hit like surgery that simultaneously alters immune responsiveness and provides access to bacteria, or genetic disorder. We conjecture that, as a consequence of the co-evolution of the immune system of individuals with the ecology of pathogens, the homeostasis of the immune system requires the influx of pathogens. This allows the immune system to keep the ever present pathogens under control and to react and adjust fast to bursts of infections. We construct the simplest and most general system of rate equations which describes the dynamics of five compartments: healthy cells, altered cells, adaptive and innate immune cells, and pathogens. We study four regimes obtained with or without auto-immune disorder and with or without spontaneous proliferation of infected cells. Over all regimes, we find that seven different states are naturally described by the model: (i) strong healthy immune system, (ii) healthy organism with evanescent immune cells, (iii) chronic infections, (iv) strong infections, (v) cancer, (vi) critically ill state and (vii) death. The analysis of stability conditions demonstrates that these seven states depend on the balance between the robustness of the immune system and the influx of pathogens.
Are large biological extinctions such as the Cretaceous/Tertiary KT boundary due to a meteorite, extreme volcanic activity or self-organized critical extinction cascades? Are commercial successes due to a progressive reputation cascade or the result
Numerical model of the peripheral circulation and dynamical model of the large vessels and the heart are discussed in this paper. They combined together into the global model of blood circulation. Some results of numerical simulations concerning matt
All living cells interact dynamically with a constantly changing world. Eukaryotes in particular, evolved radically new ways to sense and react to their environment. These advances enabled new and more complex forms of cellular behavior in eukaryotes
Despite the spectacular achievements of molecular biology in the second half of the twentieth century and the crucial advances it permitted in cancer research, the fight against cancer has brought some disillusions. It is nowadays more and more appar
The occurrence of new events in a system is typically driven by external causes and by previous events taking place inside the system. This is a general statement, applying to a range of situations including, more recently, to the activity of users i