ﻻ يوجد ملخص باللغة العربية
The prediction of a binary sequence is a classic example of online machine learning. We like to call it the stock prediction problem, viewing the sequence as the price history of a stock that goes up or down one unit at each time step. In this problem, an investor has access to the predictions of two or more experts, and strives to minimize her final-time regret with respect to the best-performing expert. Probability plays no role; rather, the market is assumed to be adversarial. We consider the case when there are two history-dependent experts, whose predictions are determined by the d most recent stock moves. Focusing on an appropriate continuum limit and using methods from optimal control, graph theory, and partial differential equations, we discuss strategies for the investor and the adversarial market, and we determine associated upper and lower bounds for the investors final-time regret. When d is less than 4 our upper and lower bounds coalesce, so the proposed strategies are asymptotically optimal. Compared to other recent applications of partial differential equations to prediction, ours has a new element: there are two timescales, since the recent history changes at every step whereas regret accumulates more slowly.
This work addresses a classic problem of online prediction with expert advice. We assume an adversarial opponent, and we consider both the finite-horizon and random-stoppi
This work addresses the classic machine learning problem of online prediction with expert advice. We consider the finite-horizon version of this zero-sum, two-person game. Using verification arguments from optimal control theory, we view the task of
This work addresses the classic machine learning problem of online prediction with expert advice. A new potential-based framework for the fixed horizon version of this problem has been recently developed using verification arguments from optimal cont
In this paper, we develop a PDE approach to consider the optimal strategy of mean field controlled stochastic system. Firstly, we discuss mean field SDEs and associated Fokker-Plank eqautions. Secondly, we consider a fully-coupled system of forward-b
In approachability with full monitoring there are two types of conditions that are known to be equivalent for convex sets: a primal and a dual condition. The primal one is of the form: a set C is approachable if and only all containing half-spaces ar