ﻻ يوجد ملخص باللغة العربية
This work addresses the classic machine learning problem of online prediction with expert advice. We consider the finite-horizon version of this zero-sum, two-person game. Using verification arguments from optimal control theory, we view the task of finding better lower and upper bounds on the value of the game (regret) as the problem of finding better sub- and supersolutions of certain partial differential equations (PDEs). These sub- and supersolutions serve as the potentials for player and adversary strategies, which lead to the corresponding bounds. To get explicit bounds, we use closed-form solutions of specific PDEs. Our bounds hold for any given number of experts and horizon; in certain regimes (which we identify) they improve upon the previous state of the art. For two and three experts, our bounds provide the optimal leading order term.
This work addresses the classic machine learning problem of online prediction with expert advice. A new potential-based framework for the fixed horizon version of this problem has been recently developed using verification arguments from optimal cont
This work addresses a classic problem of online prediction with expert advice. We assume an adversarial opponent, and we consider both the finite-horizon and random-stoppi
In this work, we aim to create a completely online algorithmic framework for prediction with expert advice that is translation-free and scale-free of the expert losses. Our goal is to create a generalized algorithm that is suitable for use in a wide
For the problem of prediction with expert advice in the adversarial setting with geometric stopping, we compute the exact leading order expansion for the long time behavior of the value function. Then, we use this expansion to prove that as conjectur
We derive an online learning algorithm with improved regret guarantees for `easy loss sequences. We consider two types of `easiness: (a) stochastic loss sequences and (b) adversarial loss sequences with small effective range of the losses. While a nu