ترغب بنشر مسار تعليمي؟ اضغط هنا

Beating Greedy For Approximating Reserve Prices in Multi-Unit VCG Auctions

242   0   0.0 ( 0 )
 نشر من قبل Mahsa Derakhshan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem of finding personalized reserve prices for unit-demand buyers in multi-unit eager VCG auctions with correlated buyers. The input to this problem is a dataset of submitted bids of $n$ buyers in a set of auctions. The goal is to find a vector of reserve prices, one for each buyer, that maximizes the total revenue across all auctions. Roughgarden and Wang (2016) showed that this problem is APX-hard but admits a greedy $frac{1}{2}$-approximation algorithm. Later, Derakhshan, Golrezai, and Paes Leme (2019) gave an LP-based algorithm achieving a $0.68$-approximation for the (important) special case of the problem with a single-item, thereby beating greedy. We show in this paper that the algorithm of Derakhshan et al. in fact does not beat greedy for the general multi-item problem. This raises the question of whether or not the general problem admits a better-than-$frac{1}{2}$ approximation. In this paper, we answer this question in the affirmative and provide a polynomial-time algorithm with a significantly better approximation-factor of $0.63$. Our solution is based on a novel linear programming formulation, for which we propose two different rounding schemes. We prove that the best of these two and the no-reserve case (all-zero vector) is a $0.63$-approximation.



قيم البحث

اقرأ أيضاً

125 - Shahar Dobzinski , Ami Mor 2015
In this note we study the greedy algorithm for combinatorial auctions with submodular bidders. It is well known that this algorithm provides an approximation ratio of $2$ for every order of the items. We show that if the valuations are vertex cover f unctions and the order is random then the expected approximation ratio imrpoves to $frac 7 4$.
We study two standard multi-unit auction formats for allocating multiple units of a single good to multi-demand bidders. The first one is the Discriminatory Auction, which charges every winner his winning bids. The second is the Uniform Price Auction , which determines a uniform price to be paid per unit. Variants of both formats find applications ranging from the allocation of state bonds to investors, to online sales over the internet, facilitated by popular online brokers. For these formats, we consider two bidding interfaces: (i) standard bidding, which is most prevalent in the scientific literature, and (ii) uniform bidding, which is more popular in practice. In this work, we evaluate the economic inefficiency of both multi-unit auction formats for both bidding interfaces, by means of upper and lower bounds on the Price of Anarchy for pure Nash equilibria and mixed Bayes-Nash equilibria. Our developments improve significantly upon bounds that have been obtained recently in [Markakis, Telelis, ToCS 2014] and [Syrgkanis, Tardos, STOC 2013] for submodular valuation functions. Moreover, we consider for the first time bidders with subadditive valuation functions for these auction formats. Our results signify that these auctions are nearly efficient, which provides further justification for their use in practice.
A seminal result of Bulow and Klemperer [1989] demonstrates the power of competition for extracting revenue: when selling a single item to $n$ bidders whose values are drawn i.i.d. from a regular distribution, the simple welfare-maximizing VCG mechan ism (in this case, a second price-auction) with one additional bidder extracts at least as much revenue in expectation as the optimal mechanism. The beauty of this theorem stems from the fact that VCG is a {em prior-independent} mechanism, where the seller possesses no information about the distribution, and yet, by recruiting one additional bidder it performs better than any prior-dependent mechanism tailored exactly to the distribution at hand (without the additional bidder). In this work, we establish the first {em full Bulow-Klemperer} results in {em multi-dimensional} environments, proving that by recruiting additional bidders, the revenue of the VCG mechanism surpasses that of the optimal (possibly randomized, Bayesian incentive compatible) mechanism. For a given environment with i.i.d. bidders, we term the number of additional bidders needed to achieve this guarantee the environments {em competition complexity}. Using the recent duality-based framework of Cai et al. [2016] for reasoning about optimal revenue, we show that the competition complexity of $n$ bidders with additive valuations over $m$ independent, regular items is at most $n+2m-2$ and at least $log(m)$. We extend our results to bidders with additive valuations subject to downward-closed constraints, showing that these significantly more general valuations increase the competition complexity by at most an additive $m-1$ factor. We further improve this bound for the special case of matroid constraints, and provide additional extensions as well.
Standard ad auction formats do not immediately extend to settings where multiple size configurations and layouts are available to advertisers. In these settings, the sale of web advertising space increasingly resembles a combinatorial auction with co mplementarities, where truthful auctions such as the Vickrey-Clarke-Groves (VCG) can yield unacceptably low revenue. We therefore study core selecting auctions, which boost revenue by setting payments so that no group of agents, including the auctioneer, can jointly improve their utilities by switching to a different outcome. Our main result is a combinatorial algorithm that finds an approximate bidder optimal core point with almost linear number of calls to the welfare maximization oracle. Our algorithm is faster than previously-proposed heuristics in the literature and has theoretical guarantees. We conclude that core pricing is implementable even for very time sensitive practical use cases such as realtime auctions for online advertising and can yield more revenue. We justify this claim experimentally using the Microsoft Bing Ad Auction data, through which we show our core pricing algorithm generates almost 26% more revenue than VCG on average, about 9% more revenue than other core pricing rules known in the literature, and almost matches the revenue of the standard Generalized Second Price (GSP) auction.
Search auctions have become a dominant source of revenue generation on the Internet. Such auctions have typically used per-click bidding and pricing. We propose the use of hybrid auctions where an advertiser can make a per-impression as well as a per -click bid, and the auctioneer then chooses one of the two as the pricing mechanism. We assume that the advertiser and the auctioneer both have separate beliefs (called priors) on the click-probability of an advertisement. We first prove that the hybrid auction is truthful, assuming that the advertisers are risk-neutral. We then show that this auction is superior to the existing per-click auction in multiple ways: 1) It takes into account the risk characteristics of the advertisers. 2) For obscure keywords, the auctioneer is unlikely to have a very sharp prior on the click-probabilities. In such situations, the hybrid auction can result in significantly higher revenue. 3) An advertiser who believes that its click-probability is much higher than the auctioneers estimate can use per-impression bids to correct the auctioneers prior without incurring any extra cost. 4) The hybrid auction can allow the advertiser and auctioneer to implement complex dynamic programming strategies. As Internet commerce matures, we need more sophisticated pricing models to exploit all the information held by each of the participants. We believe that hybrid auctions could be an important step in this direction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا