ﻻ يوجد ملخص باللغة العربية
We theoretically investigated electron energy loss spectroscopy (EELS) of ultraviolet surface plasmon modes in aluminum nanodisks. Using full-wave simulations, we studied the impact of diameter on the resonant modes of the nanodisks. We found that the mode behavior can be separately classified for two distinct cases: (1) flat nanodisks where the diameter is much less than the thickness; and (2) thick nanodisks where the diameter is comparable to the thickness. While the multipolar edge modes and breathing modes of flat nanostructures have previously been interpreted using intuitive, analytical models based on surface plasmon polariton (SPP) modes of a thin-film stack, it has been found that the true dispersion relation of the multipolar edge modes deviates significantly from the SPP dispersion relation. Here, we developed a modified intuitive model that uses effective wavelength theory to accurately model this dispersion relation with significantly less computational overhead compared to full-wave electromagnetic simulations. However, for the case of thick nanodisks, this effective wavelength theory breaks down, and such intuitive models are no longer viable. We found that this is because some modes of the thick nanodisks carry a polar (i.e. out of the substrate plane, or along the electron beam direction) dependence and cannot be simply categorized as radial breathing modes or angular (azimuthal) multipolar edge modes. This polar dependence leads to radiative losses, motivating the use of simultaneous EELS and cathodoluminescence measurements when experimentally investigating the complex mode behavior of thick nanostructures.
We present an electron energy loss study using energy filtered TEM of spatially resolved surface plasmon excitations on a silver nanorod of aspect ratio 14.2 resting on a 30 nm thick silicon nitride membrane. Our results show that the excitation is q
The inelastic scattering of electrons is one route to study the vibrational and electronic properties of materials. Such experiments, also called electron energy-loss spectroscopy, are particularly useful for the investigation of the collective excit
We observe unique absorption resonances in silver/silica multilayer-based epsilon-near-zero (ENZ) metamaterials that are related to radiative bulk plasmon-polariton states of thin-films originally studied by Ferrell (1958) and Berreman (1963). In the
We show that waveguides with a dielectric core and a lossy metamaterial cladding (metamaterial-dielectric guides) can support hybrid ordinary-surface modes previously only known for metal-dielectric waveguides. These hybrid modes are potentially usef
We report systematic studies of plasmonic and photonic guiding modes in large-area chemical-vapor-deposition-grown graphene on nanostructured silicon substrates. Light interaction in graphene with substrate photonic crystals can be classified into fo