ﻻ يوجد ملخص باللغة العربية
The gravitational potential phi = GM/Rc^2 at the surface of the white dwarf G191-B2B is 10,000 times stronger than that at the Earths surface. Numerous photospheric absorption features are detected, making this a suitable environment to test theories in which the fundamental constants depend on gravity. We have measured the fine structure constant, alpha, at the white dwarf surface, used a newly calibrated Hubble Space Telescope STIS spectrum of G191-B2B, two new independent sets of laboratory Fe V wavelengths, and new atomic calculations of the sensitivity parameters that quantify Fe V wavelength dependency on alpha. The two results obtained are: dalpha/alpha = 6.36 +/- [0.33(stat) + 1.94(sys)] X 10^{-5} and dalpha/alpha = 4.21 +/- [0.47(stat) + 2.35(sys)] X 10^{-5}. The measurements hint that the fine structure constant increases slightly in the presence of strong gravitational fields. A comprehensive search for systematic errors is summarised, including possible effects from line misidentifications, line blending, stratification of the white dwarf atmosphere, the quadratic Zeeman effect and electric field effects, photospheric velocity flows, long-range wavelength distortions in the HST spectrum, and variations in the relative Fe isotopic abundances. None fully account for the observed deviation but the systematic uncertainties are heavily dominated by laboratory wavelength measurement precision.
White dwarf atmospheres are subjected to gravitational potentials around $10^5$ times larger than occur on Earth. They provide a unique environment in which to search for any possible variation in fundamental physics in the presence of strong gravita
We propose a new probe of the dependence of the fine structure constant, alpha, on a strong gravitational field using metal lines in the spectra of white dwarf stars. Comparison of laboratory spectra with far-UV astronomical spectra from the white dw
An experimental search for variation in the fundamental coupling constants is strongly motivated by modern high-energy physics theories. Comparison of quasar absorption line spectra with laboratory spectra provides a sensitive probe for variability o
For the spectral analysis of high-resolution and high-signal-to-noise spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model-atmospheres are mandatory. These are strongly dependent on the reliability of the atomic dat