ﻻ يوجد ملخص باللغة العربية
White dwarf atmospheres are subjected to gravitational potentials around $10^5$ times larger than occur on Earth. They provide a unique environment in which to search for any possible variation in fundamental physics in the presence of strong gravitational fields. However, a sufficiently strong magnetic field will alter absorption line profiles and introduce additional uncertainties in measurements of the fine structure constant. Estimating the magnetic field strength is thus essential in this context. Here we model the absorption profiles of a large number of atomic transitions in the white dwarf photosphere, including first-order Zeeman effects in the line profiles, varying the magnetic field as a free parameter. We apply the method to a high signal-to-noise, high-resolution, far-ultraviolet HST/STIS spectrum of the white dwarf G191-B2B. The method yields a sensitive upper limit on its magnetic field of $B < 2300$ Gauss at the $3sigma$ level. Using this upper limit we find that the potential impact of quadratic Zeeman shifts on measurements of the fine structure constant in G191-B2B is 4 orders of magnitude below laboratory wavelength uncertainties.
We propose a new probe of the dependence of the fine structure constant, alpha, on a strong gravitational field using metal lines in the spectra of white dwarf stars. Comparison of laboratory spectra with far-UV astronomical spectra from the white dw
The gravitational potential phi = GM/Rc^2 at the surface of the white dwarf G191-B2B is 10,000 times stronger than that at the Earths surface. Numerous photospheric absorption features are detected, making this a suitable environment to test theories
We present evidence for variations in the fine-structure constant from Keck/HIRES spectra of 143 quasar absorption systems over the redshift range 0.2 < z_abs < 4.2. This includes 15 new systems, mostly at high-z (z_abs > 1.8). Our most robust estima
The possibility of variation of the fundamental constants of nature has been a long-standing question, with important consequences for fundamental physics and cosmology. In particular, it has been shown that variations in the fine-structure constant,
Magnetic fields are everywhere in nature and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent