ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a streaming model to distinguish voice queries intended for a smart-home device from background speech. The proposed model consists of multiple CNN layers with residual connections, followed by a stacked LSTM architecture. The streaming capability is achieved by using unidirectional LSTM layers and a causal mean aggregation layer to form the final utterance-level prediction up to the current frame. In order to avoid redundant computation during online streaming inference, we use a caching mechanism for every convolution operation. Experimental results on a device-directed vs. non device-directed task show that the proposed model yields an equal error rate reduction of 41% compared to our previous best model on this task. Furthermore, we show that the proposed model is able to accurately predict earlier in time compared to the attention-based models.
In this work, we propose a classifier for distinguishing device-directed queries from background speech in the context of interactions with voice assistants. Applications include rejection of false wake-ups or unintended interactions as well as enabl
Knowledge Distillation (KD) is a popular area of research for reducing the size of large models while still maintaining good performance. The outputs of larger teacher models are used to guide the training of smaller student models. Given the repetit
This paper focuses on wake on intent (WOI) techniques for platforms with limited compute and memory. Our approach of utterance-level intent classification is based on a sequence of keywords in the utterance instead of a single fixed key phrase. The k
Confidence measure is a performance index of particular importance for automatic speech recognition (ASR) systems deployed in real-world scenarios. In the present study, utterance-level neural confidence measure (NCM) in end-to-end automatic speech r
Human emotional speech is, by its very nature, a variant signal. This results in dynamics intrinsic to automatic emotion classification based on speech. In this work, we explore a spectral decomposition method stemming from fluid-dynamics, known as D