ترغب بنشر مسار تعليمي؟ اضغط هنا

EigenEmo: Spectral Utterance Representation Using Dynamic Mode Decomposition for Speech Emotion Classification

227   0   0.0 ( 0 )
 نشر من قبل Shuiyang Mao
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Human emotional speech is, by its very nature, a variant signal. This results in dynamics intrinsic to automatic emotion classification based on speech. In this work, we explore a spectral decomposition method stemming from fluid-dynamics, known as Dynamic Mode Decomposition (DMD), to computationally represent and analyze the global utterance-level dynamics of emotional speech. Specifically, segment-level emotion-specific representations are first learned through an Emotion Distillation process. This forms a multi-dimensional signal of emotion flow for each utterance, called Emotion Profiles (EPs). The DMD algorithm is then applied to the resultant EPs to capture the eigenfrequencies, and hence the fundamental transition dynamics of the emotion flow. Evaluation experiments using the proposed approach, which we call EigenEmo, show promising results. Moreover, due to the positive combination of their complementary properties, concatenating the utterance representations generated by EigenEmo with simple EPs averaging yields noticeable gains.



قيم البحث

اقرأ أيضاً

Human emotions are inherently ambiguous and impure. When designing systems to anticipate human emotions based on speech, the lack of emotional purity must be considered. However, most of the current methods for speech emotion classification rest on t he consensus, e.g., one single hard label for an utterance. This labeling principle imposes challenges for system performance considering emotional impurity. In this paper, we recommend the use of emotional profiles (EPs), which provides a time series of segment-level soft labels to capture the subtle blends of emotional cues present across a specific speech utterance. We further propose the emotion profile refinery (EPR), an iterative procedure to update EPs. The EPR method produces soft, dynamically-generated, multiple probabilistic class labels during successive stages of refinement, which results in significant improvements in the model accuracy. Experiments on three well-known emotion corpora show noticeable gain using the proposed method.
167 - Wei Liu , Tan Lee 2021
Confidence measure is a performance index of particular importance for automatic speech recognition (ASR) systems deployed in real-world scenarios. In the present study, utterance-level neural confidence measure (NCM) in end-to-end automatic speech r ecognition (E2E ASR) is investigated. The E2E system adopts the joint CTC-attention Transformer architecture. The prediction of NCM is formulated as a task of binary classification, i.e., accept/reject the input utterance, based on a set of predictor features acquired during the ASR decoding process. The investigation is focused on evaluating and comparing the efficacies of predictor features that are derived from different internal and external modules of the E2E system. Experiments are carried out on children speech, for which state-of-the-art ASR systems show less than satisfactory performance and robust confidence measure is particularly useful. It is noted that predictor features related to acoustic information of speech play a more important role in estimating confidence measure than those related to linguistic information. N-best score features show significantly better performance than single-best ones. It has also been shown that the metrics of EER and AUC are not appropriate to evaluate the NCM of a mismatched ASR with significant performance gap.
Emotional state of a speaker is found to have significant effect in speech production, which can deviate speech from that arising from neutral state. This makes identifying speakers with different emotions a challenging task as generally the speaker models are trained using neutral speech. In this work, we propose to overcome this problem by creation of emotion invariant speaker embedding. We learn an extractor network that maps the test embeddings with different emotions obtained using i-vector based system to an emotion invariant space. The resultant test embeddings thus become emotion invariant and thereby compensate the mismatch between various emotional states. The studies are conducted using four different emotion classes from IEMOCAP database. We obtain an absolute improvement of 2.6% in accuracy for speaker identification studies using emotion invariant speaker embedding against average speaker model based framework with different emotions.
A recitation is a way of combining the words together so that they have a sense of rhythm and thus an emotional content is imbibed within. In this study we envisaged to answer these questions in a scientific manner taking into consideration 5 (five) well known Bengali recitations of different poets conveying a variety of moods ranging from joy to sorrow. The clips were recited as well as read (in the form of flat speech without any rhythm) by the same person to avoid any perceptual difference arising out of timbre variation. Next, the emotional content from the 5 recitations were standardized with the help of listening test conducted on a pool of 50 participants. The recitations as well as the speech were analyzed with the help of a latest non linear technique called Detrended Fluctuation Analysis (DFA) that gives a scaling exponent {alpha}, which is essentially the measure of long range correlations present in the signal. Similar pieces (the parts which have the exact lyrical content in speech as well as in the recital) were extracted from the complete signal and analyzed with the help of DFA technique. Our analysis shows that the scaling exponent for all parts of recitation were much higher in general as compared to their counterparts in speech. We have also established a critical value from our analysis, above which a mere speech may become a recitation. The case may be similar to the conventional phase transition, wherein the measurement of external condition at which the transformation occurs (generally temperature) is called phase transition. Further, we have also categorized the 5 recitations on the basis of their emotional content with the help of the same DFA technique. Analysis with a greater variety of recitations is being carried out to yield more interesting results.
Categorical speech emotion recognition is typically performed as a sequence-to-label problem, i.e., to determine the discrete emotion label of the input utterance as a whole. One of the main challenges in practice is that most of the existing emotion corpora do not give ground truth labels for each segment; instead, we only have labels for whole utterances. To extract segment-level emotional information from such weakly labeled emotion corpora, we propose using multiple instance learning (MIL) to learn segment embeddings in a weakly supervised manner. Also, for a sufficiently long utterance, not all of the segments contain relevant emotional information. In this regard, three attention-based neural network models are then applied to the learned segment embeddings to attend the most salient part of a speech utterance. Experiments on the CASIA corpus and the IEMOCAP database show better or highly competitive results than other state-of-the-art approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا