ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision measurements with cold atoms and trapped ions

73   0   0.0 ( 0 )
 نشر من قبل Wei Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent progresses on quantum control of cold atoms and trapped ions in both the scientific and technological aspects greatly advance the applications in precision measurement. Thanks to the exceptional controllability and versatility of these massive quantum systems, unprecedented sensitivity has been achieved in clocks, magnetometers and interferometers based on cold atoms and ions. Besides, these systems also feature many characteristics that can be employed to facilitate the applications in different scenarios. In this review, we briefly introduce the principles of optical clocks, cold atom magnetometers and atom interferometers used for precision measurement of time, magnetic field, and inertial forces. The main content is then devoted to summarize some recent experimental and theoretical progresses in these three applications, with special attention being paid to the new designs and possibilities towards better performance. The purpose of this review is by no means to give a complete overview of all important works in this fast developing field, but to draw a rough sketch about the frontiers and show the fascinating future lying ahead.



قيم البحث

اقرأ أيضاً

A mixed system of cooled and trapped, ions and atoms, paves the way for ion assisted cold chemistry and novel many body studies. Due to the different individual trapping mechanisms, trapped atoms are significantly colder than trapped ions, therefore in the combined system, the strong binary ion$-$atom interaction results in heat flow from ions to atoms. Conversely, trapped ions can also get collisionally heated by the cold atoms, making the resulting equilibrium between ions and atoms intriguing. Here we experimentally demonstrate, Rubidium ions (Rb$^+$) cool in contact with magneto-optically trapped (MOT) Rb atoms, contrary to the general expectation of ion heating for equal ion and atom masses. The cooling mechanism is explained theoretically and substantiated with numerical simulations. The importance of resonant charge exchange (RCx) collisions, which allows swap cooling of ions with atoms, wherein a single glancing collision event brings a fast ion to rest, is discussed.
We demonstrate a double-trap system well suited to study cold collisions between trapped ions and trapped atoms. Using Yb$^+$ ions confined in a Paul trap and Yb atoms in a magneto-optical trap, we investigate charge-exchange collisions of several is otopes for collision energies down to 400 neV (5 mK). The measured rate coefficient of $6 times 10^{-10}$ cm$^{3}$s$^{-1}$, constant over four orders of magnitude in collision energy, is in good agreement with that derived from a semiclassical Langevin model for an atomic polarizability of 143 a.u.
We realize fast transport of ions in a segmented micro-structured Paul trap. The ion is shuttled over a distance of more than 10^4 times its groundstate wavefunction size during only 5 motional cycles of the trap (280 micro meter in 3.6 micro seconds ). Starting from a ground-state-cooled ion, we find an optimized transport such that the energy increase is as low as 0.10 $pm$ 0.01 motional quanta. In addition, we demonstrate that quantum information stored in a spin-motion entangled state is preserved throughout the transport. Shuttling operations are concatenated, as a proof-of-principle for the shuttling-based architecture to scalable ion trap quantum computing.
We provide a detailed theoretical and conceptual study of a planned experiment to excite Rydberg states of ions trapped in a Paul trap. The ultimate goal is to exploit the strong state dependent interactions between Rydberg ions to implement quantum information processing protocols and to simulate the dynamics of strongly interacting spin systems. We highlight the promises of this approach when combining the high degree of control and readout of quantum states in trapped ion crystals with the novel and fast gate schemes based on interacting giant Rydberg atomic dipole moments. We discuss anticipated theoretical and experimental challenges on the way towards its realization.
170 - Tobias Schaetz 2021
Isolating neutral and charged particles from the environment is essential in precision experiments. For decades, this has been achieved by trapping ions with radio-frequency (rf) fields and neutral particles with optical fields. Recently, trapping of ions by interaction with light has been demonstrated. This might permit combining the advantages of optical trapping and ions. For example, by superimposing optical traps to investigate ensembles of ions and atoms in absence of any radiofrequency fields, as well as to benefit from the versatile and scalable trapping geometries featured by optical lattices. In particular, ions provide individual addressability, electronic and motional degrees of freedom that can be coherently controlled and detected via high fidelity, state-dependent operations. Their long-range Coulomb interaction is significantly larger compared to those of neutral atoms and molecules. This qualifies to study ultra-cold interaction and chemistry of trapped ions and atoms, as well as to provide a novel platform for higher-dimensional experimental quantum simulations. The aim of this topical review is to present the current state of the art and to discuss current challenges and the prospects of the emerging field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا