ﻻ يوجد ملخص باللغة العربية
Polar magnetic oxide HoCrWO$_6$ is synthesized and its crystal structure, magnetic structure, and thermodynamic properties are investigated. HoCrWO$_6$ forms the polar crystal structure (space group Pna2$_1$ (#33)) due to the cation ordering of W$^{6+}$ and Cr$^{3+}$. There is an antiferromagnetic transition at TN = 24.5 K along with the magnetic entropy change (~5 J.Kg.$^{-1}$K$^{-1}$ at 70 kOe). Neutron diffraction measurement indicates that both Cr and Ho sublattices are ordered with the moment of 2.32(5)$mu_B$ and 8.7(4)$mu_B$ at 2 K, respectively. While Cr forms A-type collinear antiferromagnetic (AFM) structure with magnetic moment along the $b$ axis, Ho sublattice orders in a non-coplanar AFM arrangement. A comparison with isostructural DyFeWO$_6$ and DyCrWO$_6$ indicates that the magnetic structure of this family of compounds is controlled by the presence or absence of eg electrons in the transition metal sublattice.
Complex systems with coexisting polarity, chirality and incommensurate magnetism are of great interest because they open new degrees of freedom in interaction between different subsystems and therefore they host a plethora of intriguing physical prop
A new series of cubic double perovskites Ba$_2R_{2/3}$TeO$_6$ ($R$ = Y, La, Pr, Nd, Sm-Lu) was synthesized via solid state reaction. The $R^{3+}$ and Te$^{6+}$ ions are ordered on alternating octahedral sites, with the rare earth sites 2/3 occupied t
Ultrathin (111)-oriented polar iron oxide films were grown on a Pt(111) single crystal either by the reactive deposition of iron or oxidation of metallic iron monolayers. These films were characterized using low energy electron diffraction, scanning
Magnetic insulators are important materials for a range of next generation memory and spintronic applications. Structural constraints in this class of devices generally require a clean heterointerface that allows effective magnetic coupling between t
Topological polar vortices that are the electric analogues of magnetic objects, present great potential in applications of future nanoelectronics due to their nanometer size, anomalous dielectric response, and chirality. To enable the functionalities