ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice and magnetic dynamics in polar chiral incommensurate antiferromagnet Ni$_2$InSbO$_6$

81   0   0.0 ( 0 )
 نشر من قبل Mikhail Prosnikov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Complex systems with coexisting polarity, chirality and incommensurate magnetism are of great interest because they open new degrees of freedom in interaction between different subsystems and therefore they host a plethora of intriguing physical properties. Here we report on optical properties and lattice and spin dynamics of Ni$_2$InSbO$_6$ single crystals studied with the use of polarized optical microscopy and micro-Raman spectroscopy in the temperature range 10-300 K. Ni$_2$InSbO$_6$ crystallizes in a polar structure described by the noncentrosymmetric space group R3 and two types of structural domains were visualized due to natural optical activity of opposite chirality. Raman tensor elements of most A and E phonons along with their symmetry were determined. The manifestation of LO-TO splitting was observed for the A modes. By tracking the temperature dependencies of phonon frequencies the well pronounced spin-phonon interaction was observed for several modes below and above the Neel transition temperature TN = 76 K. In antiferromagnetic phase a wide excitation centred at 247 cm-1 was detected and assigned to the two-magnon mode and this value was used for estimating exchange parameters through linear spin-wave theory calculations.



قيم البحث

اقرأ أيضاً

Magnetic-field effect on the magnetic and electric properties in a chiral polar ordered corundum Ni$_2$InSbO$_6$ has been investigated. Single-crystal soft x-ray and neutron diffraction measurements confirm long-wavelength magnetic modulation. The mo dulation direction tends to align along the magnetic field applied perpendicular to the polar axis, suggesting that the nearly proper-screw type helicoid should be formed below 77,K. The application of a high magnetic field causes a metamagnetic transition. In a magnetic field applied perpendicular to the polar axis, a helix-to-canted antiferromagnetic transition takes place through the intermediate soliton lattice type state. On the other hand, a magnetic field applied along the polar axis induces a first-order metamagnetic transition. These metamagnetic transitions accompany a change in the electric polarization along the polar axis.
71 - X. Zhao , Z. Y. Zhao , L. M. Chen 2019
Magnetism of the $S$ = 1 Heisenberg antiferromagnets on the spatially anisotropic square lattice has been scarcely explored. Here we report a study of the magnetism, specific heat, and thermal conductivity on Ni[SC(NH$_2$)$_2$]$_6$Br$_2$ (DHN) single crystals. Ni$^{2+}$ ions feature an $S$ = 1 rectangular lattice in the $bc$ plane, which can be viewed as an unfrustrated spatially anisotropic square lattice. A long-range antiferromagnetic order is developed at $T rm_N =$ 2.23 K. Below $Trm_N$, an upturn is observed in the $b$-axis magnetic susceptibility and the resultant minimum might be an indication for the $XY$ anisotropy in the ordered state. A gapped spin-wave dispersion is confirmed from the temperature dependence of the magnetic specific heat. Anisotropic temperature-field phase diagrams are mapped out and possible magnetic structures are proposed.
The nature of Na ion distribution, diffusion path, and the spin structure of $P2$-type Na$_2$Ni$_2$TeO$_6$ with a Ni honeycomb network has been explored. The nuclear density distribution of Na ions reveals a 2D chiral pattern within Na layers without breaking the original 3D crystal symmetry, which has been achieved uniquely via an inverse Fourier transform (iFT)-assisted neutron diffraction technique. The Na diffusion pathway described by the calculated iso-surface of Na ion bond valence sum (BVS) map is found consistent to a chiral diffusion mechanism. The Na site occupancy and Ni$^{2+}$ spin ordering were examined in detail with the electron density mapping, neutron diffraction, magnetic susceptibility, specific heat, thermal conductivity and transport measurements. Signatures of both strong incommensurate (ICM) and weak commensurate (CM) antiferromagnetic (AFM) spin ordering were identified in the polycrystalline sample studied, and the CM-AFM spin ordering was confirmed by using a single crystal sample through the $k$-scan in the momentum space corresponding to the AFM peak of ($frac{1}{2}$, 0, 1).
Magnetic shape memory Heusler alloys are multiferroics stabilized by the correlations between electronic, magnetic and structural order. To study these correlations we use time resolved x-ray diffraction and magneto-optical Kerr effect experiments to measure the laser induced dynamics in a Heusler alloy Ni$_2$MnGa film and reveal a set of timescales intrinsic to the system. We observe a coherent phonon which we identify as the amplitudon of the modulated structure and an ultrafast phase transition leading to a quenching of the incommensurate modulation within 300~fs with a recovery time of a few ps. The thermally driven martensitic transition to the high temperature cubic phase proceeds via nucleation within a few ps and domain growth limited by the speed of sound. The demagnetization time is 320~fs, which is comparable to the quenching of the structural modulation.
70 - C. Dhital , D. Pham , T. Lawal 2020
Polar magnetic oxide HoCrWO$_6$ is synthesized and its crystal structure, magnetic structure, and thermodynamic properties are investigated. HoCrWO$_6$ forms the polar crystal structure (space group Pna2$_1$ (#33)) due to the cation ordering of W$^{6 +}$ and Cr$^{3+}$. There is an antiferromagnetic transition at TN = 24.5 K along with the magnetic entropy change (~5 J.Kg.$^{-1}$K$^{-1}$ at 70 kOe). Neutron diffraction measurement indicates that both Cr and Ho sublattices are ordered with the moment of 2.32(5)$mu_B$ and 8.7(4)$mu_B$ at 2 K, respectively. While Cr forms A-type collinear antiferromagnetic (AFM) structure with magnetic moment along the $b$ axis, Ho sublattice orders in a non-coplanar AFM arrangement. A comparison with isostructural DyFeWO$_6$ and DyCrWO$_6$ indicates that the magnetic structure of this family of compounds is controlled by the presence or absence of eg electrons in the transition metal sublattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا