ترغب بنشر مسار تعليمي؟ اضغط هنا

Localization, epidemic transitions, and unpredictability of multistrain epidemics with an underlying genotype network

76   0   0.0 ( 0 )
 نشر من قبل Laurent H\\'ebert-Dufresne
 تاريخ النشر 2020
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mathematical disease modelling has long operated under the assumption that any one infectious disease is caused by one transmissible pathogen spreading among a population. This paradigm has been useful in simplifying the biological reality of epidemics and has allowed the modelling community to focus on the complexity of other factors such as population structure and interventions. However, there is an increasing amount of evidence that the strain diversity of pathogens, and their interplay with the host immune system, can play a large role in shaping the dynamics of epidemics. Here, we introduce a disease model with an underlying genotype network to account for two important mechanisms. One, the disease can mutate along network pathways as it spreads in a host population. Two, the genotype network allows us to define a genetic distance across strains and therefore to model the transcendence of immunity often observed in real world pathogens. We study the emergence of epidemics in this model, through its epidemic phase transitions, and highlight the role of the genotype network in driving cyclicity of diseases, large scale fluctuations, sequential epidemic transitions, as well as localization around specific strains of the associated pathogen. More generally, our model illustrates the richness of behaviours that are possible even in well-mixed host populations once we consider strain diversity and go beyond the one disease equals one pathogen paradigm.



قيم البحث

اقرأ أيضاً

The resurgence of measles is largely attributed to the decline in vaccine adoption and the increase in mobility. Although the vaccine for measles is readily available and highly successful, its current adoption is not adequate to prevent epidemics. V accine adoption is directly affected by individual vaccination decisions, and has a complex interplay with the spatial spread of disease shaped by an underlying mobility (travelling) network. In this paper, we model the travelling connectivity as a scale-free network, and investigate dependencies between the networks assortativity and the resultant epidemic and vaccination dynamics. In doing so we extend an SIR-network model with game-theoretic components, capturing the imitation dynamics under a voluntary vaccination scheme. Our results show a correlation between the epidemic dynamics and the networks assortativity, highlighting that networks with high assortativity tend to suppress epidemics under certain conditions. In highly assortative networks, the suppression is sustained producing an early convergence to equilibrium. In highly disassortative networks, however, the suppression effect diminishes over time due to scattering of non-vaccinating nodes, and frequent switching between the predominantly vaccinating and non-vaccinating phases of the dynamics.
The ongoing Coronavirus Disease 2019 (COVID-19) pandemic threatens the health of humans and causes great economic losses. Predictive modelling and forecasting the epidemic trends are essential for developing countermeasures to mitigate this pandemic. We develop a network model, where each node represents an individual and the edges represent contacts between individuals where the infection can spread. The individuals are classified based on the number of contacts they have each day (their node degrees) and their infection status. The transmission network model was respectively fitted to the reported data for the COVID-19 epidemic in Wuhan (China), Toronto (Canada), and the Italian Republic using a Markov Chain Monte Carlo (MCMC) optimization algorithm. Our model fits all three regions well with narrow confidence intervals and could be adapted to simulate other megacities or regions. The model projections on the role of containment strategies can help inform public health authorities to plan control measures.
Epidemic control is of great importance for human society. Adjusting interacting partners is an effective individualized control strategy. Intuitively, it is done either by shortening the interaction time between susceptible and infected individuals or by increasing the opportunities for contact between susceptible individuals. Here, we provide a comparative study on these two control strategies by establishing an epidemic model with non-uniform stochastic interactions. It seems that the two strategies should be similar, since shortening the interaction time between susceptible and infected individuals somehow increases the chances for contact between susceptible individuals. However, analytical results indicate that the effectiveness of the former strategy sensitively depends on the infectious intensity and the combinations of different interaction rates, whereas the latter one is quite robust and efficient. Simulations are shown in comparison with our analytical predictions. Our work may shed light on the strategic choice of disease control.
So far most of the analysis of coronavirus 2020 epidemic data has been focusing on a short-time window and consequently a quantitative test of statistical physical laws of Coronavirus Epidemics with Containment Measures (CEwCM) is currently lacking. Here we report a quantitative analysis of CEwCM over 230 days, covering the full-time lapse of the first epidemic wave. We use a 3D phase diagram tracking the simultaneous evolution of the doubling time Td(t) and reproductive number Rt(t) showing that this expanded parameter space is needed for biological physics of CEwCP. We have verified that in the supercritical [Rt(t)>1, Td(t)<40 days] regime i) the curve Z(t) of total infected cases follows the growth rate called Ostwald law; ii) the doubling time follows the exponential law Td(t)=A exp((t-t0)/s) as a function of time and iii) the power law Td(t)=C(Rt(t)-1)^-n is verified with the exponent n depending on the definition of Rt(t). The log-log plots Td(t) versus (Rt-1) of the second 2020 epidemic wave unveil in the subcritical regime [Td(t)>100 days] arrested metastable phases with Rt>1 where Td(t) was kept constant followed by its explosion and its containment following the same power law as in the first wave
The COVID-19 pandemic has challenged authorities at different levels of government administration around the globe. When faced with diseases of this severity, it is useful for the authorities to have prediction tools to estimate in advance the impact on the health system and the human, material, and economic resources that will be necessary. In this paper, we construct an extended Susceptible-Exposed-Infected-Recovered model that incorporates the social structure of Mar del Plata, the $4^circ$ most inhabited city in Argentina and head of the Municipality of General Pueyrredon. Moreover, we consider detailed partitions of infected individuals according to the illness severity, as well as data of local health resources, to bring these predictions closer to the local reality. Tuning the corresponding epidemic parameters for COVID-19, we study an alternating quarantine strategy, in which a part of the population can circulate without restrictions at any time, while the rest is equally divided into two groups and goes on successive periods of normal activity and lockdown, each one with a duration of $tau$ days. Besides, we implement a random testing strategy over the population. We found that $tau = 7$ is a good choice for the quarantine strategy since it matches with the weekly cycle as it reduces the infected population. Focusing on the health system, projecting from the situation as of September 30, we foresee a difficulty to avoid saturation of ICU, given the extremely low levels of mobility that would be required. In the worst case, our model estimates that four thousand deaths would occur, of which 30% could be avoided with proper medical attention. Nonetheless, we found that aggressive testing would allow an increase in the percentage of people that can circulate without restrictions, being the equipment required to deal with the additional critical patients relatively low.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا