ﻻ يوجد ملخص باللغة العربية
This work proposes a rigorous and practical algorithm for generating meromorphic quartic differentials for the purpose of quad-mesh generation. The work is based on the Abel-Jacobi theory of algebraic curve. The algorithm pipeline can be summarized as follows: calculate the homology group; compute the holomorphic differential group; construct the period matrix of the surface and Jacobi variety; calculate the Abel-Jacobi map for a given divisor; optimize the divisor to satisfy the Abel-Jacobi condition by an integer programming; compute the flat Riemannian metric with cone singularities at the divisor by Ricci flow; isometric immerse the surface punctured at the divisor onto the complex plane and pull back the canonical holomorphic differential to the surface to obtain the meromorphic quartic differential; construct the motor-graph to generate the resulting T-Mesh. The proposed method is rigorous and practical. The T-mesh results can be applied for constructing T-Spline directly. The efficiency and efficacy of the proposed algorithm are demonstrated by experimental results.
This work discovers the equivalence relation between quadrilateral meshes and meromorphic quartic. Each quad-mesh induces a conformal structure of the surface, and a meromorphic differential, where the configuration of singular vertices correspond to
We describe a high order technique to generate quadrilateral decompositions and meshes for complex two dimensional domains using spectral elements in a field guided procedure. Inspired by cross field methods, we never actually compute crosses. Instea
We describe an adaptive version of a method for generating valid naturally curved quadrilateral meshes. The method uses a guiding field, derived from the concept of a cross field, to create block decompositions of multiply connected two dimensional d
As an application of the theory of Lawson homology and morphic cohomology, Walker proved that the Abel-Jacobi map factors through another regular homomorphism. In this note, we give a direct proof of the theorem.
In this paper, we present two software packages, HexGen and Hex2Spline, that seamlessly integrate geometry design with isogeometric analysis (IGA) in LS-DYNA. Given a boundary representation of a solid model, HexGen creates a hexahedral mesh by utili