ﻻ يوجد ملخص باللغة العربية
One of the most prevalent causes of bridge failure around the world is scour, the gradual erosion of soil around a bridge foundation due to fast-flowing water. A reliable technique for monitoring scour would help bridge engineers take timely countermeasures to safeguard against failure. Although vibration-based techniques for monitoring structural damage have had limited success, primarily due to insufficient sensitivity, these have tended to focus on the detection of local damage. High natural frequency sensitivity has recently been reported for scour damage. Previous experiments to investigate this have been limited as a result of the cost of full-scale testing and the fact that scaled-down soil structure models tested outside a centrifuge do not adequately simulate full-scale behaviour. This paper describes the development of what is believed to be the first-ever centrifuge-testing programme to establish the sensitivity of bridge natural frequency to scour. For the fundamental mode of vibration, these tests found up to a 40% variation in natural frequency for 30% loss of embedment. Models of three other types of foundation, which represent a shallow pad foundation, a deep pile bent and a deep monopile, were also tested in the centrifuge at different scour levels. The shallow foundation model showed lower frequency sensitivity to scour than the deep foundation models. The level of frequency sensitivity (3.1 to 44% per scour depth equivalent to 30% of embedment of scour) detected in this experiment demonstrates the potential for using natural frequency as an indicator of both local and global scour of bridges, particularly those with deep foundations.
A measure of nonclassicality of quantum states based on the volume of the negative part of the Wigner function is proposed. We analyze this quantity for Fock states, squeezed displaced Fock states and cat-like states defined as coherent superposition of two Gaussian wave packets.
The X-ray spectra of late type stars can generally be well fitted by a two temperature component model of the corona. We fnd that the temperature of both components are strong functions of stellar age, although the temperature of the hotter plasma in
We explore chaos in the Kuramoto model with multimodal distributions of the natural frequencies of oscillators and provide a comprehensive description under what conditions chaos occurs. For a natural frequency distribution with $M$ peaks it is typic
We use an optical centrifuge to excite coherent rotational wave packets in N$_2$O, CS$_2$ and OCS molecules with rotational quantum numbers reaching up to J=465, 690 and 1186, respectively. Time-resolved rotational spectroscopy at such ultra-high lev
Layered lead halide A2An-1PbnI3n+1 perovskites (2D LHPs) are attracting considerable attention as a more stable alternative with respect to APbI3 counterparts, a workhorse material for a new generation of solar cells. However, a critical analysis on